

Applied Research and Innovation Branch

USE OF WASTE TIRES (CRUMB RUBBER) ON COLORADO HIGHWAYS

Scott Shuler

Report No. CDOT-2014-12 December 2014 The contents of this report reflect the views of the author(s), who is(are) responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views of the Colorado Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

Technical Report Documentati	on Page				
1. Report No.	2. Government Accession No.		3. Recipient's Catalog No.		
CDOT-2014-12					
4. Title and Subtitle			5. Report Date		
USE OF WASTE TIRES (C	RUMB RUBBER) ON	COLORADO	December 2014		
HIGHWAYS			6 Derforming Organization Code		
			6. Fenoming Organization Code		
7 Author(s)			8 Performing Organization Report No		
Scott Shuler			CDOT-2014-12		
Seoti Shulei					
9. Performing Organization Name and	Address		10. Work Unit No. (TRAIS)		
Colorado State University					
Department of Construction M	anagement		11. Contract or Grant No.		
224E Guggenheim	8		34.24		
Ft. Collins. CO 80523-1584					
12. Sponsoring Agency Name and Ad	dress		13. Type of Report and Period Covered		
Colorado Department of Trans	portation		Final Report. 12/2099 to 4/2014		
Applied Research and Innovati	ion Branch				
4201 E. Arkansas Ave.			14. Sponsoring Agency Code		
Denver CO 80222					
15. Supplementary Notes					
Prepared in cooperation with the	he US Department of Trar	sportation, Federal H	ighway Administration		
		1 ,			
16. Abstract					
The objective of this study was	s to determine the feasibili	ty of using waste tire	s (crumb rubber) in the		
construction of asphalt paveme	ents in Colorado. Two pil	ot test sections and or	ne control section were constructed		
and observed over a five-year p	and observed over a five-year period to meet this objective. The two pilot test sections were built using two				
crumb rubber modified (CRM) asphalt processes. One process uses ground tire rubber (GTR) blended with hot					
asphalt cement at the asphalt plant to form the hot mix asphalt. This is referred to as the Wet Process. The other					
process blends GTR and asphalt cement at a remote blending facility and is then transported to the hot mix plant					
to produce the hot mix asphalt. This process is the Terminal Bland method. In addition, a control soction was					
to produce the not mix asphart.	ntional hinder Dinders in	the two test sections	containing CTD and the control		
constructed containing a conve		the two test sections			
section met the specifications f	or PG 64-28 asphalt. Each	1 of the three test sect	ions contains approximately 1,000		
tons of 2-inch asphalt overlay p	placed over a cold-milled	surface in the eastbou	and driving lane of US 34 Bypass		
near Greeley, CO. Construction	on of the test and control s	ections occurred in th	e summer of 2009.		
The goal of this research project	ct is to evaluate the perfor	mance of the crumb r	ubber test sections compared with		
the conventional control sectio	n and depending on perfo	rmance, develop Colo	brado-specific materials and		
construction specifications for ground tire modified asphalt pavements. Also, the research project aims to					
develop guidelines and best ma	anagement practices for th	e construction of grou	and tire modified asphalt		
novements. Transverse erectiv	ng bagan in the mikhar ma	dified sections ofter ?	22 months of service and		
longitudinol organizing hogen of	to 20 months. The ended	anteu sections arter 2	2 months of service and		
iongitudinal cracking began aft	ter 29 months. The contro	of sections have no tra	insverse cracking to date with		
longitudinal cracking beginnin	g to appear after 56 month	18.			
Implementation: None.					
17. Keywords	1 1 1 .	18. Distribution Statement			
I mimb mibbor acabalt mibbor	anound nearing of time	I have do out the other	uopio op 1 1 V VI a vyobarto		

rubber		http://www.coloradodot.info/programs/research/pdfs			
19. Security Classif. (of this report)	20. Security Classif. (of	this page)	21. No. of Pages	22. Price	
Unclassified	Unclassifie	d	111		

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

CONVERSION TABLE

U. S. Customary System to SI to U. S. Customary System

(multipliers are approximate)

Multiply (symbol) LENGTH	by	To Get (symbol)	Multiply	by T	'o Get
Inches (in)	25.4	millimeters (mm)	mm	0.039	in
Feet (ft)	0.305	meters (m)	m	3.28	ft
yards (yd)	10.914	meters (m)	m	1.09	yd
miles (mi)	1.61	kilometers (km)	m	0.621	mi
AREA					
square inches (in^2)	645.2	square millimeters (mm ²)	mm^2	0.0016	in ²
square feet (ft^2)	0.093	square meters (m ²)	m^2	10.764	ft^2
square yards (yd^2)	0.836	square meters (m ²)	m^2	1.195	yd^2
acres (ac)	0.405	hectares (ha)	ha	2.47	ac
square miles (mi ²)	2.59	square kilometers (km ²)	km ²	0.386	mi ²
VOLUME					
fluid ounces (fl oz)	29.57	milliliters (ml)	ml	0.034	fl oz
gallons (gal)	3.785	liters (1)	1	0.264	gal
cubic feet (ft^3)	0.028	cubic meters (m^3)	m^3	35.71	ft^3
cubic yards (yd^3)	0.765	cubic meters (m^3)	m^3	1.307	yd ³
MASS					•
ounces (oz)	28.35	grams (g)	g	0.035	OZ
pounds (lb)	0.454	kilograms (kg)	s kg	2.202	lb
short tons (T)	0.907	megagrams (Mg)	Mg	1.103	Т
~ /			U		
		TEMPERATURE (EXACT)			
Farenheit (°F)	5(F-32)/9	Celcius (° C)	° C	1.8C+32	° F
	(F-32)/1.8				
ILLUMINATION					
foot candles (fc)	10.76	lux (lx)	lx	0.0929	fc
foot-Lamberts (fl)	3.426	candela/m (cd/m)	cd/m	0.2919	fl
FORCE AND PRF	ESSURE O	R STRESS			
	4 45		NT	225	11.0
poundtorce (lbt)	4.45	newtons (N)	N 0145	.225	Ibt
poundforce (psi)	6	b.89 Kilopascals (kPa) kPa	.0145 psi	l	

DEFINITIONS OF TERMS

DSR	Dynamic Shear Rheometer
BBR	Bending Beam Rheometer
RTFO	Rolling Thin-Film Oven
E*	Complex Modulus
S	CDOT HMA with 1 inch nominal maximum size aggregate
SX	CDOT HMA with ³ / ₄ -inch nominal maximum size aggregate
VTM	Voids in the Total Mix
VMA	Voids in the Mineral Aggregate
VFA	Voids Filled with Asphalt

Acknowledgments

Thanks to the study panel members: Ric Chapman, CDOT R4-Materials; Gary DeWitt, CDOT R4 Materials; Denis Donnelly, CAPA; Eric West, Westest; Masoud Ghaeli, CDOT R6-Materials; Jay Goldbaum, CDOT Pavement Design Program; Donna Harmelink, FHWA-Colorado Division; Bryan Roeder, CDOT-DTD Research Branch; Stephen Henry, CDOT Pavement Management System Program; Bob Mero, R6 Materials; Bill Schiebel, CDOT Materials and Geotechnical Branch; Jim Zufall, CDOT, Roy Guevara, CDOT, Richard Zamora, CDOT, NicolaUpright, CDOT R4-Materials, Aziz Khan, CDOT-DTD Research Branch; Skip Outcalt, CDOT-DTD Research Branch, Roberto de Dios, CDOT-DTD Research Branch; John Cheever of Aggregate Industries for allowing free access to the asphalt plant and paving operations during construction of the test and control sections; and Eric Heyboer for administering the grant money from CDPHE to construct the pilot test sections of the research project.

Thank you all.

EXECUTIVE SUMMARY

The objective of this study was to determine the feasibility of using waste tires (crumb rubber) in the construction of asphalt pavements in Colorado. Two pilot test sections and one control section were constructed and observed to meet this objective. The two pilot test sections were built using two crumb rubber modified (CRM) asphalt processes. One process uses ground tire rubber blended with hot asphalt cement at the asphalt plant to form the hot mix asphalt. This will be referred to as the Wet Process. The other process blends ground tire rubber and asphalt cement at a remote blending facility and is then transported to the hot mix plant to produce the hot mix asphalt. This process will be referred to as the Terminal Blend method. In addition, a control section was constructed containing a conventional binder. Binders in the two test sections containing ground tire rubber and the control section met the specifications for a PG 64-28 asphalt. Each of the three test sections contains approximately 1,000 tons of 2-inch asphalt overlay placed over a cold-milled surface in the eastbound driving lane of US 34 near Greeley, CO. Construction of the test and control sections occurred in the summer of 2009.

The goal of this research project is to evaluate the performance of the crumb rubber test sections compared with the conventional control section and depending on performance, develop Colorado-specific materials and construction specifications for ground tire modified asphalt pavements. Also, the research project aims to develop guidelines and best management practices for the construction of ground tire modified asphalt pavements. Transverse cracking began in the rubber modified sections after 22 months service and longitudinal cracking began after 29 months. After 56 months of service, transverse cracking has not been observed in the control sections. However, one longitudinal crack was observed in one of the control sections after this period.

TABLE OF CONTENTS

ACKNOWLEDGEMENTSIV
EXECUTIVE SUMMARYV
INTRODUCTION1
Objectives2
LITERATURE REVIEW
MATERIALS
CONSTRUCTION
DATA COLLECTION
ECONOMIC ANALYSIS
ENERGY UTILIZATION COMPARISON
RESULTS
ANALYSIS
CONCLUSIONS
RECOMMENDATIONS42
REFERENCES
APPENDIX A – AIR EMISSIONS TEST RESULTS
APPENDIX B – AIR PERMEABILITIES
APPENDIX C - PILOT SPECIFICATION FOR RUBBERIZED ASPHALT PAVEMENT

APPENDIX D – QUALITY CONTRO	_ DATA 6	54
-----------------------------	----------	----

INTRODUCTION

The Colorado Department of Transportation (CDOT) has used rubber in hot mix asphalt (HMA) for over 25 years. Since the early 80's, CDOT used Asphalt Cement-20 Rubberized (AC-20R) which was an Asphalt Cement-20 (AC -20) base grade of asphalt cement with a styrenebutadiene-rubber polymer blended at a terminal plant and shipped to the various locations throughout Colorado. Since CDOT's AC-20R was performing well, CDOT retained the ductility value along with the toughness and tenacity requirements for the newly initiated Performance Grade 64-28 (PG 64-28) grade of binder when the Department switched to the SuperPave performance graded HMA specifications in 1995. In 1994, CDOT built three trial sections in Colorado where crumb rubber was blended into the dense graded HMA using the dry method (crumb rubber is added as a component of the aggregates). Based on the information from Research Report Number CDOT-DTD-R-99-9, these trial sections proved to be a feasible asphalt pavement alternative and were performing well. The research noted that this process increased the cost per ton by 21 percent when the crumb rubber was added at a rate of 20 pounds per ton. It was recommended that CDOT not pursue any use of crumb rubber until it became cost effective. Other state DOTs have tried the dry method with their dense graded HMA but opted not to continue using the process because of similar concerns and other problems. Therefore, CDOT will not pursue investigating this method at this time.

The use of crumb rubber in chip seal using the wet method was also investigated in the late 80's with the results and findings documented in the Research Report Number CDOH-DTP-R-86-3. The finished product performed comparably well with the conventional chip seal materials used for pavement rehabilitation but was found to be more expensive. With the influx of improved crumb rubber technologies, it is thought that the asphalt pavement life could be longer and the use of crumb rubber employing the wet and terminal blend method might prove cost-effective. For this reason, CDOT is revisiting the use of crumb rubber in HMA utilizing pilot test sections to gather the required information for developing specifications for the wet and terminal blend methods.

1

This research evaluated the feasibility of using waste tires (crumb rubber) in the construction of asphalt pavements. As part of the evaluation, two pilot test sections and one control section using the Superpave PG 64-28 asphalt binder in dense graded HMA were built. The two pilot test sections were built with crumb rubber modified (CRM) asphalt mix using the wet method (crumb rubber is mixed with asphalt binder at the asphalt plant producing the HMA mixture) and the terminal blend method (crumb rubber is mixed with asphalt binder at a remote location and transported to the hot mix plant). Each test section consisted of approximately 1,000 tons of 2-inch thick asphalt overlay placed in the eastbound driving lane of US 34 in Greeley, Colorado. The control section was constructed with a conventional PG 64-28 binder.

Objectives

This research has eight objectives:

- 1. To develop a pilot specification for building two test sections with CRM using the wet and terminal blend methods.
- 2. To determine if CRM asphalt cement pavements can be designed and produced for a typical dense graded HMA for Colorado that either meets or exceeds the CDOT's design/construction (including placement and compaction) criteria.
- To determine if the asphalt binder for the wet and terminal blend method either meets or exceeds PG 64-28 requirements for CDOT's ductility/toughness, and tenacity specifications.
- 4. To compare the cost effectiveness of the wet and terminal blend methods with that of the conventional method using PG 64-28 binder. Determine the cost differential from using crumb rubber from out-of-state versus estimated costs from using an in-state source of crumb rubber.
- 5. To determine the energy consumption, types and levels of air pollutants associated with the production of pavement mix using the wet, terminal blend and plain PG 64-28 binders.
- 6. To develop guidelines and best management practices for the successful method(s) of incorporating crumb rubber in dense graded HMA pavements.

- 7. To update the initial pilot specification to produce a special project provision as appropriate using the information obtained from monitoring this project and other applicable data derived from the experiences of federal, other state and local agencies.
- 8. To perform annual pavement condition surveys for a maximum of five years and submit results/analysis to CDOT. To prepare a report documenting the construction and monitoring of pavement performance during the first 21 months of service life.

LITERATURE REVIEW

Granulated tire rubber has been used as a modifier for asphalt cement binders since the late 1960's. The first use of this modified binder in pavements was as a chip seal binder in Phoenix, Arizona (McDonald 1981). McDonald found that after thoroughly mixing crumb rubber with asphalt and allowing it to react for periods of forty-five minutes to an hour, new material properties were obtained. This material captured beneficial engineering characteristics of both base ingredients; he called it asphalt-rubber (Huffman, 1980). The mixing of crumb rubber with conventional asphalt binders results in stiffer binder (Dantas Neto *et al.*, 2003; Way, 2003) with improved rutting and cracking properties.

One explanation for this is the absorption of some of the asphalt constituents in the rubber. When rubber absorbs these components the rubber particles swell. The extent of swelling is dependent on the nature, temperature and viscosity of the asphalt (Treloar 1975, Shuler, *et al* 1979). The bulk of the rubber absorbs the solvent, which increases the dimensions of the rubber network until the concentration of liquid is uniform and equilibrium swelling is achieved. Previous research has indicated that the crumb rubber particles reacting with asphalt binder swell and form a viscous gel due to absorption of some of the lighter fractions in the asphalt binder (Green and Tolonen, 1997; Heitzman, 1992; Bahia and Davies, 1994; Zanzotto and Kennepohl, 1996; Kim *et al.*, 2001). Furthermore, Leite *et al.* discovered that the proportion of the crumb rubber in the mixture changes significantly since a rubber particle can swell from 3 to 5 times its original size when blended with an asphalt binder (Leite *et al.*, 2003). Many experimental studies and field test sections have been constructed and tested (Shuler, et al 1982) using asphalt rubber as a chip seal or interlayer between an old cracked asphalt pavement and the new overlay. Performance of these test sections was documented based on a Federal Highway Administration (FHWA) pooled fund study (Shuler, et al 1985) where over 200 field test sections were evaluated. Although the results of this research indicated a range of performance from very poor to extremely good, work continued to develop asphalt rubber as a binder for sprayed seal applications and HMA. The National Cooperative Highway Research Programs (NCHRP) "Synthesis of Highway Practice 198 – Uses of Recycled Rubber Tires in Highways" provides comprehensive review of the use of recycled rubber tires in highways based on a review of nearly 500 references and on information recorded from state highway agencies' responses to a 1991 survey of current practices (Epps 1994).

A study from Virginia (Maupin 1996) reported that the mixes containing asphalt rubber performed at least as well as conventional mixes. In Virginia mixes, the inclusion of asphalt rubber in HMA pavements increases construction cost by 50 to 100 percent as compared to the cost of conventional mixes. Nevada (Troy, et al 1996) conducted research on CRM asphalt pavements and concluded that the conventional sample geometry in Superpave binder test protocols cannot be used to test the CRM binders and that the Hveem compaction is inadequate for mixtures containing CRM binders. The Louisiana Department of Transportation and Development (LADOTD) started a research project to evaluate different procedures of CRM applications in 1994 in which the long-term pavement performance of the CRM asphalt mixtures (LTRC 1996).

Construction practices in Arizona, California and Florida has been compiled (Hicks et al, 1995) as well as an interim report on construction guidelines (Hanson, 1996) and a compilation of specification requirements (Shuler 1982). These reports have been helpful to agencies that wish to develop specifications for crumb rubber modified asphalt.

The Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991, Section 1038 mandated the use of rubber modified asphalt pavements. However, AASHTO was opposed to the mandate

4

because facts regarding fume emissions, cost effectiveness, durability, longevity, and recyclability were unknown. Therefore, U.S. Congress was persuaded to repeal Section 1038 of ISTEA making use of asphalt rubber in federally funded projects optional. The economic savings related to using asphalt rubber has been presented using the FHWA Life Cycle Cost Analysis (Hicks, et al 1999)

The Texas Transportation Institute conducted a study of two recycled crumb rubber pavements (Crockford, 1995). The study concluded that recycling was possible and that emissions from the project were no more severe than conventional asphalt hot mix. Recycling of an asphalt rubber pavement occurred in Los Angeles, California. (Youssef, 1995). The pavement was cold milled and added to the virgin mixture at 15 percent of the total mix. Air sampling during paving and recycling determined that employee exposure to air contaminants were below the Occupational Safety and Health Administration (OSHA) permissible exposure limits (PEL), and in most cases below detection limits.

Fume emissions have been studied extensively in a number of asphalt-rubber projects since, and in all cases they have been determined to be below the National Institute for Occupational Safety and Health (NIOSH) recommended exposure limits. (Gunkel, 1994).

Combustion technologies are effective in the disposal of large quantities of waste tires and should be used where feasible and acceptable to the public. However, the combustion of tires does not provide a continuous public benefit and results in a net energy loss when all is considered. Although approximately 15,000 BTUs are recaptured when a tire is combusted, 30,000 BTUs were expended to create each tire. In contrast, the United States Department of Energy has estimated that over 90,000 BTUs/lb. of production can be saved by utilizing asphalt-rubber through reduced materials usage and its long lasting performance (Gaines and Wolsky, 1979.

MATERIALS

Testing binder and mixture materials properties was accomplished by CDOT Region 4, CDOT Headquarters and the paving contractor, Aggregate Industries, Inc. during construction. Results of the binder tests are summarized in Table 1 and the precise grading of each asphalt material is shown in Table 2.

ne i nop	nait Dina		5 CALCO					
Material	DSR, min 1.00 kPa	Ductility, Min 50 cm	Toughness, Min 110i/p	Tenacity, min 75i/p	RTFO DSR, min 2.20 kPa	RTFO Ductility, min 20 cm	BBR, S max, 300 MPa	BBR, m min 0.300
	1.66	60	190	174	3.23	35	123	0.355
	1.66	60	210	194	3.20	41	122	0.356
Control	1.75	60	249	231	3.32	33	137	0.352
PG64-28	1.55		150	138				
	1.56		150	136				
	1.69	60	213	197	3.24	34	135	0.347
PG6428	2.06	6	40	5	4.47	3	195	0.306
WP*	1.91	6	32	3.3	4.86	4	192	0.308
DC 64 29	2.10	29	102	2.1	3.48	16	117	0.365
FG04-28 TR***	2.01	30	115	2.0	3.35	17	288	0.302
ID	2.08	29	106	1.9	3.49	16	124	0.358

Table 1 – Asphalt Binder Test Results*

* Test results not meeting specifications are shown in italics

** WP refers to the wet process rubber modification at the site

*** TB refers to the terminal blend rubber modification at the Wright asphalt terminal in Texas

.	L = 1 Cloce 1 G Graunig	of Flogeet Asphalts
	Material	Actual Grading
	Control PG 64-28	PG 68.8-34.0
	PG 64-28 WP*	PG 73.1-29.6
	PG 64-28 TB	PG 68.6-32.4

Table 2 – Precise PG Grading of Project Asphalts

* The original asphalt used to create the 'wet process' rubber modified asphalt was a PG 58.9-31.4 blended with an average of 9.25 percent crumb rubber by total blend weight at the site.

Further characterization of the binders was done using the Dynamic Shear Rheometer (DSR) at multiple loading rates to create so-called mastercurves for G^* as a function of loading time. This data is shown in Figure 1.

Figure 1 – G* Mastercurves for Project Asphalt Binders

The asphalt mixture used for all three test sections was a CDOT grading SX at 100 design Superpave gyrations of compaction. Mixture design properties are shown in Tables 3, 4 and 5 for the control, terminal blend, and wet process l mixtures, respectively.

Sieve, mm	Passing, %	Specification
19	100	100
12.5	95	90-100
9.5	86	80-92
4.75	62	57-67
2.36	47	42-52
1.18	34	
0.60	22	18-26
0.30	14	
0.15	9	
0.075	5.8	3.8-7.8
AC, %	5.70	5.8-6.4
VTM, %	3.6	2.7-5.1
VMA, %	14.8	13.7-15.1
VFA, %	n/a	65-75
Hveem	30	
Stability		
ITS-dry, psi	n/a	
TSR, %	n/a	
Mix Design	170947	
FS#	n/a	

 Table 3 – Mixture Design Properties – Control

 Table 4 – Mixture Design Properties – Terminal Blend

Sieve, mm	Passing, %	Specification
19	100	100
12.5	95	90-100
9.5	86	80-92
4.75	62	57-67
2.36	47	42-52
1.18	34	
0.60	22	18-26
0.15	9	
0.075	5.8	3.8-7.8
AC, %	5.60	5.3-5.9
VTM, %	3.9	2.7-5.1
VMA, %	14.9	13.7-15.1
VFA, %	n/a	65-75
Hveem	30	
Stability		
ITS-dry, psi	n/a	
Retained ITS,	n/a	
%		
Mix Design	180610TB	
FS#	n/a	

Sieve, mm	Passing, %	Specification
19	100	100
12.5	95	90-100
9.5	86	80-92
4.75	62	57-67
2.36	47	42-52
1.18	34	
0.60	22	18-26
0.30	14	
0.15	9	
0.075	5.8	3.8-7.8
AC, %	6.10	5.8-6.4
VTM, %	3.9	2.7-5.1
VMA, %	16.5	13.7-15.1
VFA, %	n/a	65-75
Hveem	30	
Stability		
ITS-dry, psi	n/a	
Retained ITS,	n/a	
%		
Mix Design	180610WP	
FS#	n/a	

Table 5 – Mixture Design Properties – Wet Process

CONSTRUCTION

Construction of the control pavement sections was accomplished on July 27 and 28, 2009, the terminal blend on August 3 through 6, 2009 and the wet process on August 10 through 12, 2009 by Aggregate Industries West Central Region. The project consisted of removing the top two inches of the existing pavement by cold milling and replacing this material with two inches of the test and control pavement materials. The condition of the pavement prior to milling and overlay operations is shown in Figures 2, 3 and 4 for the control, wet process and terminal blend sections, respectively. Properties of the materials are shown in Tables 6, 7 and 8 for the control, terminal blend and wet process products, respectively.

Figure 2. Control Section Looking East

Figure 3. Wet Process Section Looking East

Figure 4. Terminal Blend Section Looking East

Sie	eve	Passir	ng, %		
Standard SI, mm		7/27/2009 7/28/20		Specification	
3/4"	19	100	100	100	
1/2"	12.5	97	92	90-100	
3/8"	9.5	84	85	80-92	
4	4.75	62	60	57-67	
8	2.36	46	45	42-52	
16	1.18	36	34		
30	0.60	24	22	18-26	
50	0.30	15	15		
100	0.15	9	9		
200	0.075	5.3	5.9	3.8-7.8	

 Table 6 – Control Properties As-Built (Contractor Quality Control Data)

D (Cara			
Property	7/27/2009	7/27/2009	7/28/2009	7/28/2009	Spec
AC, %	5.34	5.29	5.22	5.36	5.3.5.9
VTM, %	3.14		2.59		2.7-5.1
VMA, %	14.1		13.2		13.7-15.1
VFA, %					65-75
Compaction, %	94.6		94.0	94.3	

	Passing, %				Specification
Sieve, mm	8/3/09	8/4/09	8/4/09	8/6/09	specification
19	100	100	100	100	100
12.5	98	96	96	98	90-100
9.5	90	87	86	89	80-92
4.75	65	64	63	65	57-67
2.36	50	51	50	51	42-52
1.18	37	37	36	37	
0.60	25	25	24	25	18-26
0.30	16	16	15	16	
0.15	10	10	10	10	
0.075	6.6	7.1	6.7	6.2	3.8-7.8
AC, %	5.58	5.26	5.40	5.49	5.30-5.90
VTM, %	4.0	3.0	3.4	3.9	2.7-5.1
VMA, %	14.4	13.4	14.0	14.4	13.7-15.1
VFA, %	72.5	77.7	75.7	72.8	65-75
Hveem Stability	39	42	43	39	
ITS-dry, psi	73.2			88.7	30
Retained ITS, %	87			89	70
Sample No.	118HQ	2	3	126HQ	
FS#	14976	14977	14978	14977	

Table 7a – As Built Properties-Terminal Blend Binder (CDOT Quality Assurance Data)

Table 7b -	- As Built I	Properties-T	'erminal Blen	d Binder (V	WesTest ()uality A	Assurance Data

Property	8/3/09	8/4/09	8/4/09	Spec
AC, (nuc/ign), %	5.16/5.38	5.28/n/a	5.19/n/a	5.30-5.90
VTM, %	4.6	4.0	4.2	2.7-5.1
VMA, %	14.5	14.3	14.7	13.7-15.1
VFA, %	68.3	71.8	71.6	65-75
Hveem Stability	47	n/a	n/a	
Lottman, dry, psi	80	n/a	n/a	30
TSR, %	79	n/a	n/a	70

		Pass	Specification		
Sieve, mm	8/10/09	8/11/09	8/11/09	8/12/09	Specification
19	100	100		100	100
12.5	94	95		95	90-100
9.5	86	87		86	80-92
4.75	60	66		65	57-67
2.36	46	52		50	42-52
1.18	33	37		36	
0.60	21	24		23	18-26
0.30	13	16		14	
0.15	9	10		9	
0.075	5.9	6.7		5.8	3.8-7.8
AC, %	6.37	6.31	6.25	6.42	5.8-6.4
VTM, %	5.1	4.9	3.4	5.2	2.7-5.1
VMA, %	17.5	17.3	16	17.2	13.7-15.1
VFA, %	70.8	71.8	78.5	69.7	65-75
Hveem Stability	28	31	32	30	
ITS-dry, psi	83.6			82.6	
Retained ITS, %	91	87			
Sample No.	1	2	3	136HQ	
FS#	14979	14980	14981	14979	

 Table 8a – As Built Properties-Wet Process Binder (CDOT Quality Assurance Data)

 Table 8b – As Built Properties-Wet Process Binder (WesTest Quality Assurance Data)

Property	8/10/09	8/10/09	8/11/09	Spec
AC, (nuc/ign), %	5.91/n/a	5.96/n/a	6.27/n/a	5.8 - 6.4
VTM, %	4.4	3.7	4.6	3.1 – 5.5
VMA, %	16.3	15.5	17.0	15.3 – 17.7
VFA, %	72.8	76.4	73.0	65-75
Hveem Stability	37	n/a	n/a	30
Lottman, dry, psi	86	n/a	n/a	30
TSR, %	84	n/a	n/a	70

Placement of the HMA was by a conventional self-propelled asphalt laydown machine fed by rear discharge tractor trailer units directly into the paver hopper. Compaction was achieved using a steel vibratory breakdown roller followed by a seven-wheel pneumatic and finally a static steel finish roller. Compaction, air voids, VMA, asphalt content, and aggregate gradation were generally very consistent as shown in the quality level charts in Appendix D.

The terminal blend asphalt rubber was produced in Channelview, Texas and shipped by tank truck to the Aggregate Industries asphalt plant in Greeley, CO.

The wet process asphalt rubber was blended at the asphalt plant by EcoPath. This process involves adding ground tire rubber (GTR) to hot liquid asphalt cement in a mixing tank and then pumping the resulting blended mixture to the HMA plant. A portable control trailer shown in Figures 5 and 6 monitors the quantity of rubber and asphalt combined as well as temperature. The asphalt cement and GTR are blended in a horizontal tank shown in

Figure 5 – EcoPath Control Trailer and Mixer

Figure 6 – EcoPath Control Room

Figure 7 until the mixture is ready to be transferred to the HMA plant for blending with aggregates.

Figure 7 – EcoPath Mixing Tank

When the mixture of blended asphalt and rubber is ready for transfer to the hot mix plant the viscosity is determined using a portable rotational viscometer as shown in Figure 8.

All three types of asphalt mixtures were produced in a Gencor counterflow drum mix plant.

Figure 8 – Rotational Viscosity

DATA COLLECTION

Air Emissions

Since asphalt rubber must be produced at higher temperatures than conventional HMA emissions have historically been significantly greater than on conventional HMA projects. Therefore, the data on quality of air emissions during construction generated from the asphalt plant was collected by Airtech Environmental Services, Inc. of Arvada, Colorado. The air quality was monitored during construction by instrumenting the asphalt plant as shown in Figure 9 and analyzing the results in a mobile laboratory at the site as shown in Figures 10 and 11. Results of this testing are shown in Appendix A.

Figure 9 – Air Emissions Data Collection

Figure 10 – Air Emissions Analysis

Figure 11 – Air Emissions Chemistry

Test Sections

Test and control sections are located on the US 34 Bypass in Greeley, CO in the eastbound driving lane between 71st Avenue and 35th Avenue. The 'Control Test' sections are between 71st and 65th Avenue, the 'Wet Process' test sections are between 65th and 47th Avenue, and the 'Terminal Blend' test sections are between 47th and 35th Avenue. Performance of the materials was determined by observing distress within two 500-foot long segments established within each test and control pavement section. These segments are shown in Figures 12, 13, and 14. Each five hundred foot long segment is subdivided into five 100-foot long sample sections. These are shown as the shaded areas on each figure. That is, Samples 1-5 and 6-10 are the control sections, Samples 11-15 and 16-20 are the 'wet process' sections and Samples 21-25 and 26-30 are the 'terminal blend' sections.

A precondition survey was conducted on the test and control sections prior to milling and overlay operations. This baseline data will be used to compare performance of each section relative to the condition prior to rehabilitation. Condition surveys have been conducted since placement of the test and control sections beginning 2010.

Figure 12 – Location of Control PG 64-28 Evaluation Sections on US 34

Figure 13 – Location of Wet Process Evaluation Sections on US 34

Figure 14 – Location of Terminal Blend Evaluation Sections on US 34

Permeability of the Surface

The air permeability of the pavement was measured by CDOT Headquarters Materials and Goetechnical Branch Asphalt Program personnel after construction. Results of this testing are shown in Appendix B.

ECONOMIC ANALYSIS

The following is a cost analysis of three asphalt pavement overlays placed on US 34 near Greeley, Colorado in 2009. The overlay materials analyzed consist of HMA containing a control PG 64-28, a binder containing GTR blended at a terminal away from Greeley (terminal blend), and a binder containing tire rubber blended at the hot mix plant (wet process blend). The difference in cost of these three HMA products as produced for this experimental project is summarized below in Table 9:

	Constant 1	J JJ7-4	T
	Control	wet	Terminal
Tons placed >	22,642	1,072	955
Sale Cost/ton, \$	70.20	104.25	129.74
Sale Cost, \$	1,589,501	111,790	123,989
Plant Modifications, \$		13,119	21,159
Mobilization, \$		35,505	
Total Costs, \$	1,589,501	160,415	145,148
Adjusted Cost/ton, \$	70.20	149.60	151.88
Tons/mi	766	766	766
Cost/mi, \$	53,745	114,530	116,280

Table 9 - Cost of Mixtures Placed on US 34, Greeley

Further Economic Analysis

The analysis above was based on the actual costs to construct the test sections. However, since test sections are usually customized experimental features, costs are often higher than when materials are produced for routine use. Therefore, an additional analysis was conducted inserting prices for the 'terminal blend' GTR modified asphalt from data obtained from the City of Colorado Springs where the 'terminal blend' material was utilized beginning in 2006. In a report published by Colorado Springs (Khattak and Syme) the added cost of the 'terminal blend' GTR modified HMA was 22 percent higher than conventional materials. Therefore, using this as a guide, the cost per ton shown in Table 9 for the terminal blend material has been adjusted downward from \$129.74 to \$85.64.

Further analysis was done assuming tonnages of the two GTR test sections were equal to that of the control material. CDOT has significant data on the cost of HMA around Region 4 where the test sections are located and has developed a relationship between cost per ton and tons of asphalt placed. The equation in Table 10 for cost/ton adjusts the price of hot mix as a function of HMA quantities utilized. This equation is used to determine the 'economy of scale factor' which is obtained by calculating the ratio of the unit cost of larger quantity to the unit cost of smaller quantity of HMA. For example, the 'economy of scale factor' for the 'Wet Process,' in Table 10 is 0.86 which is the ratio of the unit cost \$77.32 for the given tonnage of 22,642 to the unit cost \$89.98 for the given tonnage of 1,072. Using similar calculation to determine the 'economy of scale factor' for the 'Terminal Blend,' the resulting ratio of 0.85 (\$77.32/\$90.49) is obtained. For the control pavement, the information on actual cost per ton and total tonnage of conventional HMA is used in the economic analysis since this is the best cost data available. In this case, the 'economy of scale factor,' is equal to 1.00 since the basis of the calculation is the actual quantity of conventional HMA used and therefore no adjustment is needed to account for economy of scale. This procedure eliminates the bias for small quantities. The 'economy of scale factor' is then used to calculate the 'scale factor adjusted cost per ton'.

Based on initial cost of conventional HMA, the number of years (n) for GTR pavement materials to become equivalent to that of conventional HMA are shown in Table 11 which are calculated from Present Value Formula assuming a design discount rate of 2.6% (CDOT 2015 ME Pavement Design Manual) and no rehabilitation and maintenance costs are required for all these types of pavement materials. From this analysis, it is evident that the 'wet process' pavement to be equal in cost to the conventional HMA, no maintenance would be required of the 'wet process' pavement for about 10 years. Using the CO Springs adjusted cost for the 'terminal blend' pavement to equal the cost of the conventional HMA pavement, there would be no maintenance required for this pavement until after approximately 8 years of service. However, neither of the GTR pavements is performing as well as the control section, and is likely to require maintenance sooner, rather than later, compared to the conventional HMA pavement sections.

25

		Material				
	Actual Project HMA	Figure 13.32 HMA**	Wet Process**	Terminal Blend**	CO Springs Adjustment	
$*$ Cost/ton, $$ = 127.27*(Tons)^{-0.0497}$	70.20	77.32	89.98	90.49	85.64	
Tons	22642	22642	1072	955		
Economy of Scale Factor:		1.00	0.86	0.85		
Sale Cost/Ton, \$:	70.20		104.25	129.74		
Scale Factor Adjusted Cost/Ton, \$	70.20		89.66	110.28	85.64	
Tons/mi	766.00		766.00	766.00	766.00	
Cost/mi, \$	53,773		68,680	84,474	65,600	
Cost Increase from Conventional HMA, %	0.0%		27.7%	57.1%	22.0%	

Table 10 - Economic Analysis Assuming Equal Quantities of Materials

**Polymer Modified HMA Unit Cost Equation

(Region 4, Figure 13.32, 2015 ME Pavement Design Manual page 460)

Table 11 - Comparative Cost Analysis Using Present Value Formula

	Present Value Formula: PV=FV/(1+i) ⁿ m=log(FV/DV)/log(1+i)					
	where: $PV =$ present value: $FV =$ future value:					
	i= disc	ount rate, 2.6 %;	· · · · · · · · · · · · · · · · · · ·			
	n= num	ber of years for (GTR pavements to	become		
	equi	valent to convent	tional HMA pavem	ent assuming no		
	rehabilitation and maintenance will be required					
			FV (cost to be			
		PV (based on	discounted to	n (years		
		conventional	PV to become	required to		
		HMA as	equivalent to	become		
	Cost per lane-	reference	conventional	equivalent to		
Pavement Material	mile,\$	pavement)	HMA)	conv. HMA)		
Conventional HMA	\$ 53,773	\$ 53,773	\$ 53,773	0		
Wet Process	\$ 68,680	\$ 53,773	\$ 68,680	9.5		
Terminal Blend	\$ 84,474	\$ 53,773	\$ 84,474	17.6		
Terminal Blend (with CO						
Springs adjustment factor)	\$ 65,600	\$ 53,773	\$ 65,600	7.7		

ENERGY UTILIZATION COMPARISON

Crumb rubber modified asphalt (CRM) is composed of crumb tire rubber derived from the grinding of scrap tires blended with hot asphalt binder. CRM used in this study is blended with asphalt at a terminal and shipped to the asphalt plant (terminal blend) or it is blended with asphalt at the asphalt plant (wet method). Both of these processes are used to make modified asphalt which when mixed with aggregates produces a HMA. The energy used to produce GTR and HMA has been evaluated (Gaines 1979) using the amount of BTUs of energy required per pound of each product as shown in Table 12.

Process	BTUs/Pound				
	Asphalt Rubber	HMA			
Tire Shredding	-750	0			
Transportation of Shred	-750	0			
Granulation	-1542	0			
CRM Transportation	-750	0			
Steel Recovery	+817	0			
Asphalt Used	-90,000	-90,000			
Aggregate Used	-47,000	-47,000			
Gain+/Loss-	-139,975	-137,000			

Table 12 - BTU Utilization for Asphalt Rubber and HMA

Since both the wet and terminal blend HMAs require similar processes to obtain the crumb rubber and the blending with asphalt, they are not substantially different with respect to energy consumption. However, the energy required to produce conventional HMA is substantially less since it does not require GTR.
RESULTS

Distresses observed during condition surveys from 2010 and 2014 include transverse, longitudinal, and fatigue cracking. Results of the condition surveys for each 100-foot sample segment are shown in Figure 15 for transverse cracking, Figure 16 for longitudinal cracking and Figure 17 for fatigue cracking.

Transverse and longitudinal cracking are represented in linear feet of crack, fatigue cracking is represented in square feet of cracking. The legends in Figure 15, 16 and 17 indicate the dates when cracking was observed during each condition survey. For example, in Figure 15 for Evaluation Section 24, 4 feet of cracking was observed during the July 2013 survey, and 7 feet of cracking was observed during the April 2014 survey, an increase of 3 feet of transverse cracking for this 100 foot segment of pavement. Cracking was low to moderate severity until April 2014. However, evaluation sections with greater than 20 feet of transverse cracking in April 2014 tended to be moderate severity.

Table 13 is a summary of the air temperatures recorded during the field condition surveys.

Table 13 - Air Temperatures	During Cond	ition Surveys
-----------------------------	-------------	---------------

	Survey Date									
	6/1/10	1/18/11	6/29/11	12/23/11	10/7/12	7/31/13	4/25/13			
Temperature, F	74	32	82	26	65	78	75			

Figure 15 – Transverse Cracking by Sample Segment

Figure 16 – Longitudinal Cracking by Sample Segment

Figure 17 – Fatigue Cracking by Sample Segment

ANALYSIS

A comparative analysis of the performance of the three materials has been done by averaging the quantity of distress over the five 100-foot sample segments for each evaluation period and plotting this distress over time. These summaries are shown in Figures 18, 19 and 20 for transverse, longitudinal and alligator cracking.

Figure 18 – Transverse Cracking Over Time

Figure 19 – Longitudinal Cracking Over Time

Figure 20 – Fatigue Cracking Over Time

Further Analysis

Besides observing performance in the driving lane only, performance was also observed for both the passing lane shoulder, the passing lane, and the driving lane shoulder. Although these pavements are not carrying the same traffic as the driving lane and did not contain GTR, they should be considered for comparison since they are immediately adjacent the GTR test sections and within the geometric boundaries of the study. Materials used in the construction of these other lanes was the same as that in the control sections of the driving lane between 71st Avenue and 65th Avenue. Therefore, these could be considered control sections lying immediately adjacent each of the test sections.

The analysis is shown below for each segment of US34 within the confines of the 'control' (between 71st Ave and 65th Ave), 'wet' (between 65th Ave and 47th Ave), and 'terminal' (between 47th Ave and 35th Ave) sections. Recall that the 'wet' and 'terminal' processes are present only in the driving lane, between 65th and 47th Avenue for the 'wet' process and between 47th and 35th Avenue for the 'terminal' process.

Only transverse and longitudinal cracking was observed in the passing lane shoulder, passing lane and driving lane shoulder.

Performance Between 71st and 65th Avenue (PG 64-28 in all lanes)

Figures 21 shows performance for transverse cracking of the passing lane shoulder, passing lane, driving lane and driving lane shoulder respectively for the control segment of US 34 between 71st and 65th Avenue.

Figure 21 – Transverse Cracking – 'Control' Segment

The rate of transverse cracking in the passing lane shoulder of this segment has steadily increased since the second condition survey in 2011. The driving lane shoulder began cracking after the third condition survey in June 2011 and the passing lane after the fifth survey in 2012. Although the shoulders and passing lane of this segment of US 34 contain transverse cracks, the driving lane does not.

Figure 22 –Longitudinal Cracking – 'Control' Segment

Longitudinal cracking appeared in the passing lane and driving lane of the control segment during the last condition survey in 2013.

Performance Between 65th and 47th Avenue ('Wet Process' in Driving Lane, only)

Figures 23 and 24 show performance for transverse and longitudinal cracking for the passing lane shoulder, passing lane, driving lane and driving lane shoulder respectively for the segment of US 34 with the 'wet process' in the driving lane.

Figure 23 – Transverse Cracking - 'Wet' Segment

Figure 24 – Longitudinal Cracking - 'Wet' Segment

Transverse cracking first appeared in this segment of US 34 in the driving lane ('wet' process) and the driving lane shoulder (control PG 64-28) at the second condition survey in 2010. Transverse cracking has steadily increased in all the sections with the highest increase occurring in the 'wet' process driving lane.

Performance Between 47th and 35th Avenue ('Terminal Blend in Driving Lane, only)

Figures 25 and 26 show performance for transverse and longitudinal cracking for the passing lane shoulder, passing lane, driving lane and driving lane shoulder respectively for the 'terminal blend' segment of US 34 between 47th and 35th Avenue.

Figure 25 – Transverse Cracking - 'Terminal Blend' Segment

Figure 26 – Longitudinal Cracking - 'Terminal Blend' Segment

Transverse cracking first appeared in this segment of US 34 in the driving lane shoulder (control PG 64-28) at the second condition survey in 2010 followed by the driving lane ('terminal blend') during the fourth survey in 2011. Transverse cracking in the driving lane advanced to the same level as the driving lane shoulder by the fourth survey in 2011and then steadily increased in the driving lane ('terminal') sections surpassing the cracking on the shoulder.

Longitudinal cracking first began in the driving lane ('terminal blend') in 2011 during the fourth survey, steadily increased during the fifth survey in 2012 and leveled off for the last survey in 2013.

CONCLUSIONS

- 1. Construction of two experimental GTR modified asphalt pavements was successful using a pilot specification including both the terminal blend and wet process to modify the asphalt binders used.
- The control and GTR binders were fabricated to meet a Superpave PG 64-28 binder specification, however, the GTR modified asphalt binders failed to meet the Colorado ductility and toughness and tenacity portions of the specification.
- The HMA produced using the two GTR modified asphalts met CDOT design and construction requirements for 100 gyration Superpave mixtures.
- 4. Longitudinal and transverse cracking in the 'wet process' and 'terminal blend' test sections has steadily increased since approximately two years after construction. No transverse cracking has appeared in the control section in the driving lane, to date, and 4 feet of longitudinal cracking has occurred.
- 5. Fatigue cracking has steadily increased in the 'terminal blend' sections since three years after construction and is significantly greater than the control or 'wet process' sections. Fatigue cracking in the control and 'wet process' sections is approximately equal and significantly less than the 'terminal' blend section.
- 6. Transverse and longitudinal cracking has occurred in the control PG 64-28 pavement sections in the passing lane and both shoulders immediately adjacent the terminal blend and wet process sections. However, the quantity of this cracking is still significantly lower than the amount of cracking in the terminal blend and wet process sections.
- 7. The GTR pavements cost more to construct than the control pavement. Therefore, to be more economical both GTR pavements should require less maintenance than the control pavement. In fact, for the 'wet process' pavement to be equal in cost to the conventional HMA pavement using the simple Present Value Formula and CDOT's design discount rate no maintenance would be required of the 'wet process' pavement for about 10 years. For the 'terminal blend' pavement to be equal in cost to the conventional HMA

pavement, there would be no maintenance required for this pavement until after approximately 8 years of service. However, neither of the GTR pavements is performing as well as the control section, and is likely to require maintenance sooner, rather than later, compared to the conventional HMA pavement sections.

8. The energy consumption of the GTR pavements is approximately 3,000 BTU/pound greater than the conventional asphalt pavement.

RECOMMENDATIONS

The GTR pavements evaluated in this research study appear to cost more to construct than equivalent control HMA pavement with a PG 64-28 binder. These GTR pavements performed poorer than the control pavement with respect to cracking during the five-year observation period. The energy consumption required to produce the GTR pavements is higher than the conventional asphalt pavement.

These results indicate that use of GTR as a modifier in asphalt pavements is probably not justified when the GTR modified asphalt meets conventional PG 64-28 binder specifications. However, GTR modified asphalt pavements have performed well in other states. This may indicate that GTR modified asphalts must be produced to meet requirements other than the Superpave PG specification to provide economical results.

An experiment should be conducted to compare HMA produced using GTR modified asphalt to HMA produced using a PG binder. However, instead of producing the GTR modified asphalt to meet a specific PG specification, the GTR modified asphalt should be produced in accordance with the recommended method of the GTR modified asphalt supplier. The test GTR pavement section should be of sufficient size so that a consistent quantity of material is produced by the contractor and so the cost of the material is representative of that which would be expected during routine use for a similar quantity. The pavement to be rehabilitated should be visually surveyed prior to construction to map existing distress and analyzed by falling weight deflectometer to determine structural integrity. Test and control sections should be located within areas of the existing pavement that are as equivalent as possible with respect to distress and substrate modulus. Condition surveys should be performed within two 500-foot evaluation sections identified within each test pavement considered representative of the materials being evaluated. Condition surveys should be conducted at approximately six-month intervals in the early spring and late fall each year for a minimum of five years after construction or until sufficient distress is recorded to indicate differences in performance.

42

REFERENCES

Bahia H.U. and Davies R., "Effect of Crumb Rubber Modifier (CRM) on Performance Related Properties of Asphalt Binders," *Journal of the Association of Asphalt Paving Technologists* Vol. 63, 1994.

Crockford, W.W., Makunike, D., Davison, R.R., Scullion, T. and Billiter, T.C., Recycling Crumb Rubber Modified Asphalt Pavements. Report FHWA/TX-95/1333-1F. Texas Transportation Institute, May 1995.

Dantas Neto, S. A., Farias, M. M., Pais, J. C., Pereira ,P. A., and Picado Santos, L., "Behavior of Asphalt-Rubber Hot Mixes Obtained with High Crumb Rubber Contents," *Proceedings of the Asphalt Rubber 2003 Conference*, Brasilia, Brazil, 2003.

Epps, J., "Use of Recycled Rubber Tires in Highways – A Synthesis of Highway Practice," NCHRP Synthesis 198, National Cooperative Highway Research Program, TRB, National Research Council, Washington, D.C., 1994.

Gaines, L.L. & Wolsky, A.M. Discarded Tires: Energy Conservation Through Alternative Uses, Energy & Environmental Systems Division, United States Department of Energy December, 1979.

Green E.L. and Tolonen W.J., The Chemical and Physical Properties of Asphalt-Rubber Mixtures, Arizona Department of Transport, Report ADOT-RS-14 (162), 1977.

Gunkel, Kathryn O'C P.E. Evaluation of Exhaust Gas Emissions and Worker Exposure from Asphalt Rubber Binders in Hot Mix Asphalt, Wildwood Environmental Engineering Consultants, Inc., Michigan Department of Transportation, March 1994.

Hanson, D.I., Epps, J.A., Hicks, R.G., *Construction Guidelines for Crumb Rubber Modified Hot Mix Asphalt* National Center for Asphalt Technology, FHWA, August 1996

Heitzman, M.A., State of the Practice – Design and Construction of Asphalt Paving Materials With Crumb Rubber Modifier, Report FHWA A-SA-92-022. FHWA, May, 1992.

Hicks, R.G., J.R. Lundy, R.B. Leahy, D. Hanson, and Jon Epps. *Crumb Rubber Modifiers (CRM) in Asphalt Pavements: Summary of Practices in Arizona, California and Florida*. Report FHWA-SA-95-056. FHWA, September, 1995.

Hicks, R.G., J.R. Lundy, and Jon Epps *Life Cycle Costs for Asphalt-Rubber Paving Materials*. June 1999.

Huffman, J.E., *Sahuaro Concept of Asphalt-Rubber Binders*, Presentation at the First Asphalt Rubber User Producer Workshop, Scottsdale Arizona, May 1980.

Khattak, Saleem and Syme, Bob, "Testing Terminal Blend Tire Rubber Asphalt Performance for

Safety, Ride Quality and Cost in Colorado Springs, Colorado. Prepared for the Pikes Peak Rural Transportation Authority. No date.

Kim S., Loh S.W. Zhai, H. and Bahia H., "Advanced Characterization of Crumb Rubber-Modifier Asphalts, Using Protocols Developed for Complex Binder," *Transportation Research Record 1767*, TRB, National Research Council, Washington, DC, 2001.

Leite, L. F., Almeida da Silva, P., Edel, G., Goretti da Motta, L., and Herrmann do Nascimento, L. A., "Asphalt Rubber in Brazil: Pavement Performance and Laboratory Study," *Proceedings of the Asphalt Rubber 2003 Conference*, Brasilia, Brazil, 2003.

Maupin, G., Jr., "Hot Mix Asphalt Rubber Applications in Virginia," Transportation Research Record, No. 1530, TRB, National Research Council, Washington, D.C., 1996.

Mohammed, L, "LTRC Annual Research Program," Louisiana Transportation Research, Louisiana Transportation Research Center (LTRC), Baton Rouge, LA, June, 1996, pp. 23.

McDonald, C. H., 1981. "Recollections of Early Asphalt-Rubber History," Proceedings, National Seminar on Asphalt-Rubber, October 1981.

Shuler, S., 1982, Specification Requirements for Asphalt-Rubber, *Transportation Research Record No. 843*, Transportation Research Board of the National Academies, Washington, D.C., pp 1-4.

Shuler, T. S., Gallaway, B. M. and Epps, J. A., "Evaluation of Asphalt-Rubber Membrane Field Performance," Research Report 287-2, Texas Transportation Institute, Texas A&M University, College Station, Texas, May, 1982.

Shuler, S., Pavlovich, R. D., Epps, J. A. and Adams, C. K., 1985, *Investigation of Materials and Structural Properties of Asphalt-Rubber Paving Mixtures*, FHWA Project DTFH61-82-C-0074, Federal Highway Administration, Washington, D.C.

Shuler, S., Pavlovich, R. D., and Epps, J. A., 1985, Field Performance of Rubber-Modified Asphalt Paving Materials, *Transportation Research Record 1034*, Transportation Research Board of the National Academies, Washington, D.C., pp 96-102.

Shuler, S., Pavlovich, R. D., and Rosner, J. C., 1979, *Chemical and Physical Properties of Asphalt-Rubber*, Arizona Department of Transportation Report FHWA/AZ-79/121.

Sousa, J., Way, George, and Carlson, D. D., "Cost Benefit Analysis and Energy Consumption of Scrap Tire Management Options", Beneficial Use of Recycled Materials in Transportation Applications. Arlington, VA, November 13-15, 2001.

Treloar, L.R.G., *The Physics of Rubber Elasticity, 3rd Ed.*, Oxford University Press, Oxford, UK, 1975.

Troy, K., Sebally, P., and Epps, J., "Evaluation Systems for Crumb Rubber Modified Binders and Mixtures," Transportation Research Record, No. 1530, TRB, National Research Council, Washington, D.C., 1996.

Youssef, Z., Hovasapian, P.K., *Olympic Boulevard Asphalt Rubber Recycling Project*, City of Los Angeles Department of Public Works, February, 1995.

Way, G. B., "The Rubber Pavements Association, Technical Advisory Board Leading the Way in Asphalt Rubber Research," *Proceedings of the Asphalt Rubber 2003 Conference*, Brasilia, Brazil, 2003.

Zanzotto L. and Kennepohl G., "Development of Rubber and Asphalt Binders by Depolymerization and Devulcaniztion of Scrap Tires in Asphalt," *Transportation Research Record 1530*, TRB, National Research Council, Washington, DC, 1996.

Appendix A – Air Emissions Test Results

5776 Lamar Street • Arvada, CO 80002 Phone: (800) 618-6460 • Fax: (303) 670-4130 www.airtechenv.com

~

Report on the Air Emissions Test Program

Conducted for the Colorado Department of Transportation at the Aggregate Industries Facility Located in Greeley, Colorado

> Report No. 3017 October 9, 2009

Project Overview

General

Airtech Environmental Services Inc. was contracted by the Colorado Department of Transportation (CDOT) to perform an air emissions test program at the Aggregate Industries facility located in Greeley, Colorado. The specific objectives of the test program were as follows:

- Determine the emissions of filterable particulate matter (PM) from the exhaust stack of an Asphalt Drum Mix (ADM) unit.
- Determine the emissions of nitrogen oxides (NO_X), carbon monoxide (CO) and total hydrocarbons (THC) as propane from the ADM stack.
- Determine the opacity of emissions from the ADM stack.
- Determine the emissions of multi-metals from the ADM stack.

Testing was to be conducted under three conditions. The first condition was Hot Mix Asphalt (HMA) using PG 64-28, the second was PG 64-28 using a terminal blend and the third was PG 64-28 using a wet process. Due to a scheduling conflict, the second condition was not measured. Testing was performed on August 10, 11, 12 and 18, 2009. Coordinating the field portion of the test program were:

Brendan Lawlor - Airtech Environmental Services Inc.

Allon Kienitz - Airtech Environmental Services Inc.

Methodology

EPA Method 5 was used to determine the PM concentration at the test location. In Method 5, a sample of the gas stream was withdrawn isokinetically from the stack and the filterable PM is collected in a sample probe and on a quartz-glass fiber filter. EPA Method 5 was developed to measure total filterable particulate matter. Analysis of the samples for PM was performed gravimetrically. The opacity of the emissions from the ADM stack were determined visually by an observer and procedures found in EPA Method 9.

EPA Methods 3A, 7E, 10 and 25A were used to measure the oxygen (O_2) , carbon dioxide (CO_2) , NO_{X_2} , CO and THC concentrations at the test location. A sample of the gas stream was withdrawn from the source at a constant rate and analyzed using a temporary continuous emissions monitoring system (CEMS).

EPA Method 29 was using to measure the multi-metals concentration at the test location. In Method 29, a sample of the gas stream was withdrawn isokinetically and multi-metals were collected on a quartz-glass fiber filter, in a sample probe and in a series of chilled impingers. EPA Method 29 was operated in conjunction with the EPA Method 5 sampling train.

22

Project Overview

General

Airtech Environmental Services Inc. was contracted by the Colorado Department of Transportation (CDOT) to perform an air emissions test program at the Aggregate Industries facility located in Greeley, Colorado. The specific objectives of the test program were as follows:

- Determine the emissions of filterable particulate matter (PM) from the exhaust stack of an Asphalt Drum Mix (ADM) unit.
- Determine the emissions of nitrogen oxides (NO_X), carbon monoxide (CO) and total hydrocarbons (THC) as propane from the ADM stack.
- · Determine the opacity of emissions from the ADM stack,
- Determine the emissions of multi-metals from the ADM stack.

Testing was to be conducted under three conditions. The first condition was Hot Mix Asphalt (HMA) using PG 64-28, the second was PG 64-28 using a terminal blend and the third was PG 64-28 using a wet process. Due to a scheduling conflict, the second condition was not measured. Testing was performed on August 10, 11, 12 and 18, 2009. Coordinating the field portion of the test program were:

Brendan Lawlor - Airtech Environmental Services Inc.

Allon Kienitz - Airtech Environmental Services Inc.

Methodology

EPA Method 5 was used to determine the PM concentration at the test location. In Method 5, a sample of the gas stream was withdrawn isokinetically from the stack and the filterable PM is collected in a sample probe and on a quartz-glass fiber filter. EPA Method 5 was developed to measure total filterable particulate matter. Analysis of the samples for PM was performed gravimetrically. The opacity of the emissions from the ADM stack were determined visually by an observer and procedures found in EPA Method 9.

EPA Methods 3A, 7E, 10 and 25A were used to measure the oxygen (O_2) , carbon dioxide (CO_2) , NO_X, CO and THC concentrations at the test location. A sample of the gas stream was withdrawn from the source at a constant rate and analyzed using a temporary continuous emissions monitoring system (CEMS).

EPA Method 29 was using to measure the multi-metals concentration at the test location. In Method 29, a sample of the gas stream was withdrawn isokinetically and multi-metals were collected on a quartz-glass fiber filter, in a sample probe and in a series of chilled impingers. EPA Method 29 was operated in conjunction with the EPA Method 5 sampling train.

Colorado Department of Transportation Report No. 3017

In order to convert the concentrations of the pollutants to mass flow rates, the gas volumetric flow rate was determined concurrent with each EPA Method 5/29 sample train using EPA Methods, 1, 2, 3A and 4.

Parameters

The following specific parameters were determined at the test location:

- gas velocity
- gas temperature
- oxygen concentration
- carbon dioxide concentration
- moisture content
- · concentration of filterable particulate matter
- nitrogen oxides concentration
- carbon monoxide concentration
- · opacity of emissions
- · total hydrocarbon concentration, as propane
- multi-metals concentration¹

Results

A complete summary of test results is presented in Tables 1 and 2 on Pages 4 and 5.

Runs 1, 3, 4 and 5 were conducted under the third process condition (PG 64-28) and Run 6 was conducted under the first process condition (PG 64-28). Due to production issues a second run on the first condition was not performed

Run 2 was set up and never used due to process problems. Run 5, on August 12, 2009, was only 42.5 minutes long due to process problems. The isokinetics for Run 1 on August 10, 2009 were 116.7%, which exceeded the EPA Method 5 specification of 90% to 110% isokinetic. This likely has no significant impact on the results. A portable analyzer was used to collect O₂, CO₂, NO₃ and CO data on August 18, 2009. No THC data was collected on this date because the THC analyzer was not available.

Submitted by:

imothy Wojt

Reviewed by:

Patrick Clark, P.E.

¹ Multi-metals included arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), lead (Ph), mercury (Hg), nickel (NI), selenium (Sc), silver (Ag), and zinc (Zn).

Colorado Department of Transportation Report No. 3017

Summary of Results

Table 1 - Summary of PM, NO_X, CO, THC and Opacity Test Results

Test Parameters	Run 1	Run 3	Run 4	Run 5	Run 6
Date	8/10/2009	8/11/2009	8/11/2009	8/12/2009	8/18/2009
Start Time	9:20	7.10	8:42	11:05	9.45
Stop Time	10:27	8:15	9:46	11.62	12:49
Gas Conditions					
Temperature (^a F)	222	223	228	215	237
Volumetric Flow Rate (acfm)	46,400	48,000	46,400	38,600	41,100
Volumetric Flow Rate (scfm)	30,000	31,000	29,800	25,200	26,000
Volumetric Flow Rate (dscfm)	23,100	23,800	23,000	20,000	19,000
Carbon Dioxide (% dry)	4.12	3 95	4.58	3.80	4.59
Oxygen (% dry)	14.7	15.1	14.0	15.1	12.7
Moisture (%)	23.0	23.4	23.1	20.6	26.8
Particulate Matter Results					
Concentration (grains/dscf)	0.00510	0,00723	0.00717	0 00664	0.00925
Emission Rate (Ib/hr)	1.01	1.47	1.41	1,14	1.51
Nitrogen Oxides Results					
Concentration (ppmdv)	56.3	89.8	69.3	32.6	75.6
Emission Rate (lb/hr)	9.32	15.3	11.4	4.68	10.3
Carbon Monoxide Results					
Concentration (ppmdv)	511	597	348	842	658
Emission Rate (Ib/hr)	51.4	61.9	34.8	73.8	54.6
Total Hydrocarbon Results					
Concentration (ppmwv as propane)	52 3	44 3	27.8	140	N.A
Emission Rate (lb/hr as propane)	10.8	9.43	5,71	24.3	NA
Opacity Results					
Minimum Opacity (%)	С	C	0	0	0
Maximum Opacity (%)	C	0	0	0	5
Average Opacity (%)*	0.00	0.00	0.00	0.00	0.833

*The average opacity is based on the highest six-minute average.

Colorado Department of Transportation Report No. 3017

Page 6

Table 2 - Summary of Multi-Metals Test Results (Continued)

Test Parameters	Run 1	Run 3	Run 4	Run 5	Run 6
Date	8/10/2009	8/11/2009	8/11/2009	8/12/2009	8/18/2009
Start Time	9:20	7:10	8:42	11.05	9.45
Stop Time	10:27	8:15	9:46	11:52	12:49
Mercury Results					
Concentration (ug/dscm)	2.09	3.12	2.54	2.17	2.17
Emission Rate (lb/hr)	1.81E-04	2.78E-04	2 19E-04	1.63E-04	1.54E-04
Nickel Results					
Concentration (ug/dscm)	1.94	1.39	1.62	2.55	1.73
Emission Rate (lb/hr)	1 68E-C4	1.24E-04	1.39E-04	1.91E-04	1.23E-04
Selenium Results					
Concentration (µg/dscm)	<0.175	<0.196	<0.206	<0 329	<0.220
Emission Rate (lb/hr)	<1.51E-05	<1.75E-05	<1.77E-05	<2.47E-05	<1.57E-05
Silver Results					
Concentration (µg/dsom)	<0.175	<0.195	<0.206	<0.329	< 6.220
Emission Rate (lb/hr)	<1.51E-05	<1.75E-05	<1.77E-05	<2.47E-05	<1.57E-05
Zinc Results					
Concentration (µg/dscm)	36.7	32.0	29.6	51.9	23.2
Emission Rate (lb/hr)	3.17E-03	2.85E-03	2.55E-03	3.90E-03	1.65E-03

APPENDIX B – AIR PERMEABILITIES

Crumb R	ubber C	ontrol	Site Pa	ssing Lan	e				8/4/2009						
				Fouivalent Wa	ter Permea	ability Calc	ulations l	lsing ROM	US Air Per	meameter	Data				
						,,		_							
Viscosity of a	ir			1.84E-05	kg/m*s										
Atmospheric I	Pressure			101353	Pa										
Volume of air	Chamber			0.02186	m^3	0.02186									
Density of wat	ter			1000	kg/m^3										
Viscosity of w	ater			0.001	kg/m*s										
Test				L ⁽¹⁾	Α	t ₁	t2	t3	t4	k _{w1}	k _{w2}	k _{w3}	k _{w4}	kavg	koverall
Sample	NMAS	Voids	Gradation	(m)	(m²)	(sec)	(sec)	(sec)	(sec)	(10 ⁻⁵ cm/s)					
STA 61+60	SX			0.025	0.01824	0.714	0.838	1.038	1.442	138	144	150	152	146	147
STA 61+60	SX			0.025	0.01824	0.762	0.893	1.103	1.677	129	135	141	131	134	134
STA 61+60	SX			0.025	0.01824	0.794	0.939	1.169	1.927	124	129	133	114	125	123
STA 61+60	SX			0.025	0.01824	0.797	0.949	1.179	1.905	124	127	132	115	125	123
STA 61+10	SX			0.025	0.01824	0.65	0.756	0.95	1.671	152	160	164	131	152	148
STA 61+10	SX			0.025	0.01824	0.668	0.776	0.969	1.616	148	156	161	136	150	148
STA 61+10	SX			0.025	0.01824	0.663	0.779	0.967	1.619	149	155	161	136	150	148
STA 61+30	SX			0.025	0.01824	0.644	0.747	0.928	1.315	153	162	168	167	162	164
STA 61+30	SX			0.025	0.01824	0.667	0.777	0.962	1.627	148	155	162	135	150	147
STA 61+30	SX			0.025	0.01824	0.654	0.758	0.94	1.281	151	159	166	171	162	164
STA 61+30	SX			0.025	0.01824	0.656	0.773	0.961	1.642	150	156	162	134	151	147
STA 61+30	SX			0.025	0.01824	0.661	0.778	0.952	1.649	149	155	164	133	150	147
STA 61+30	SX			0.025	0.01824	0.674	0.778	0.968	1.613	146	155	161	136	150	147
(1) Thickness	of specimen	or layer													

Crumb R	ubber:	Termin	al Blend						7/20/2009	•					
				Equivalent Wa	ter Permea	ability Calc	ulations	Using RON	IUS Air Per	meameter	Data				
				4.045.05											
Viscosity of ai	r			1.84E-05	kg/m^s										
Atmospheric F	Pressure			101353	Pa	0.00400									
Volume of air	Chamber			0.02186	m/3	0.02186									
Density of wat	er			1000	kg/m/3										
Viscosity of w	ater			0.001	kg/m*s										
Test				L ⁽¹⁾	Α	t ₁	t ₂	t ₃	t4	k _{w1}	k _{w2}	k _{w3}	k _{w4}	k _{avg}	k _{overall}
Sample	NMAS	Voids	Gradation	(m)	(m²)	(sec)	(sec)	(sec)	(sec)	(10 ⁻⁵ cm/s)					
STA 129+70	SX			0.025	0.01824	1.001	1.190	1.498	2.356	99	101	104	93	99	98
STA 129+70	SX			0.025	0.01824	1.02	1.22	1.53	2.277	97	99	102	96	98	98
STA 129+70	SX			0.025	0.01824	1.034	1.23	1.539	2.245	95	98	101	98	98	98
STA 130+00	SX			0.025	0.01824	2.516	3.09	4.025	5.66	39	39	39	39	39	39
STA 130+00	SX			0.025	0.01824	2.628	3.257	4.196	6.022	38	37	37	36	37	37
STA 130+00	SX			0.025	0.01824	2.653	3.276	4.253	5.928	37	37	37	37	37	37
STA 130+45	SX			0.025	0.01824	1.391	1.668	2.094	2.911	71	72	74	75	73	74
STA 130+45	SX			0.025	0.01824	1.426	1.731	2.169	3.138	69	70	72	70	70	70
STA 130+45	SX			0.025	0.01824	1.463	1.754	2.221	3.427	67	69	70	64	68	67
STA 130+45	SX			0.025	0.01824	1.489	1.789	2.271	3.319	66	68	69	66	67	67
(1) Thickness	of specime	n or layer													

Crumb R	Rubber C	ontrol	Site Dr	iving Lane					7/20/2009						
				Equivalent Wa	ter Permea	ability Calc	ulations	Jsing ROM	US Air Per	meameter	Data				
Viscosity of a	ir			1.84E-05	kg/m*s										
Atmospheric	Pressure			101353	Pa										
Volume of air	Chamber			0.02186	m^3	0.02186									
Density of wa	ter			1000	kg/m^3										
Viscosity of w	/ater			0.001	kg/m*s										
Test				L ⁽¹⁾	Α	t ₁	t2	t3	t4	k _{w1}	k _{w2}	k _{w3}	k _{w4}	kavg	k _{overall}
Sample	NMAS	Voids	Gradation	(m)	(m²)	(sec)	(sec)	(sec)	(sec)	(10 ⁻⁵ cm/s)					
STA 20+30	SX			0.025	0.01824	0.590	0.675	0.820	1.138	167	179	190	193	182	184
STA 20+30	SX			0.025	0.01824	0.607	0.696	0.847	1.469	163	174	184	149	167	164
STA 20+30	SX			0.025	0.01824	0.616	0.712	0.862	1.43	160	170	181	153	166	164
STA 20+30	SX			0.025	0.01824	0.626	0.72	0.879	1.397	158	168	177	157	165	164
STA 20+40	SX			0.025	0.01824	0.498	0.558	0.679	1.091	198	216	229	201	211	210
STA 20+40	SX			0.025	0.01824	0.504	0.569	0.688	1.066	196	212	226	206	210	210
STA 20+40	SX			0.025	0.01824	0.514	0.578	0.704	1.031	192	209	221	213	209	210
STA 20+40	SX			0.025	0.01824	0.517	0.588	0.711	1.011	191	205	219	217	208	210
STA 20+30	SX			0.025	0.01824	0.48	0.542	0.659	1.147	206	223	236	191	214	210
STA 20+30	SX			0.025	0.01824	0.492	0.552	0.675	1.11	201	219	231	198	212	210
STA 20+30	SX			0.025	0.01824	0.502	0.562	0.69	1.076	197	215	226	204	210	210
STA 20+30	SX			0.025	0.01824	0.507	0.574	0.699	1.051	195	210	223	209	209	210
(1) Thickness	of specimen	or layer													

Appendix C - Pilot Specification for Rubberized Asphalt Pavement

REVISION OF SECTIONS 401, 403 AND 702 RUBBERIZED ASPHALT PAVEMENT

Sections 401, 403, and 702 of the Standard Specifications are hereby revised for this project as follows:

Subsection 401.01 shall include the following:

This work includes furnishing, placing and compacting one or more courses of rubberized bituminous mixture on a prepared foundation in accordance with these specifications and the specific requirements, and in conformity with the lines, grades, thicknesses, and typical cross sections as established by the Engineer.

Subsection 401.02 (a) shall include the following:

Laboratory mixing and compaction of terminal blended (TB) rubberized asphalt cement PG 64-28TB and wet process (WP) rubberized asphalt cement PG 64-28WP shall be in conformance with the requirements of Colorado Procedure CP-L 5114 using the mixing and compaction temperature for asphalt grade PG 64-28. The Contractor shall determine the target amount of asphalt-rubber binder PG 64-28TB and PG 64-28WP to be mixed with the aggregate in conformance with the requirements in Colorado Procedure 52.

Subsection 401.06 shall include the following:

Asphalt-rubber binder PG 64-28TB and PG 64-28WP shall consist of a mixture of paving asphalt, asphalt modifier such as styrene-butadiene-styrene, and crumb rubber modifier (CRM). At least 2 weeks before construction is scheduled to begin, the Contractor shall furnish the Engineer, for approval, a binder formulation and four (4) one-liter cans filled with the asphalt-rubber binder proposed for use on the project. The asphalt cement shall meet the applicable requirements of Table 702-1A.

Subsection 401.07 shall include the following:

All gradings and all layer thicknesses of HMA using PG 64-28TB and PG 64-28WP shall be placed only when the surface and air temperatures are 65°F or above.

Subsection 401.08 shall include the following:

The method and equipment for combining paving asphalt, asphalt modifier, and CRM for PG 64-28WP shall be so designed and accessible that the Engineer can readily determine the percentages by mass for each material being incorporated into the mixture.

The Contractor shall use, but is not limited to, the following for the wet process production of PG 64-28WP:

- A. Asphalt heating tanks equipped to heat and maintain the blended paving asphalt and asphalt modifier mixture at the necessary temperature before blending with the CRM. This unit shall be equipped with a thermostatic heat control device and a temperature reading and recording device that shall be accurate to within $\pm 35^{\circ}$ F.
- B. A mechanical mixer for the complete, homogeneous blending of paving asphalt, asphalt modifier, and CRM. The blending system shall be capable of varying the rate of delivery of paving asphalt and asphalt modifier proportionate with the delivery rate of CRM. During the proportioning and blending of the liquid ingredients, the temperature of paving asphalt and the asphalt modifier shall not vary more than $\pm 60^{\circ}$ F. The mixing system for paving asphalt, asphalt modifier, and CRM feeds shall be equipped with devices by which the rate of feed can be determined during the proportioning operation.

Meters used for proportioning individual ingredients shall be equipped with rate-of-flow indicators to show the rates of delivery and resettable totalizers so that the total amounts of liquid ingredients introduced into the mixture can be determined. The liquid and dry ingredients shall be fed directly into the mixer at a uniform and controlled rate. The rate of feed to the mixer shall not exceed that which will permit complete mixing of the materials. Dead areas in the mixer, in which the material does not move or is not sufficiently agitated, shall be corrected by a reduction in the volume of material or by other adjustments. Mixing shall continue until a homogeneous mixture of uniformly distributed and properly blended asphalt-rubber binder of unchanging appearance and consistency is produced.

The Contractor shall provide a safe sampling device capable of delivering a representative sample of the completed asphalt-rubber binder of sufficient size to permit the required tests.

- C. An asphalt-rubber binder storage tank equipped with a heating system furnished with a temperature reading device to maintain the proper temperature of the asphalt-rubber binder and an internal mixing unit capable of maintaining a homogeneous mixture of paving asphalt, asphalt modifier, and CRM. The equipment shall be approved by the Engineer prior to use.
- D. A manufactures representative shall be present during production.
- E. The Contractor shall provide a hand-held Haake Viscometer Model VT-02 with Rotor 1, 24 mm in depth and 53 mm in height, or equivalent, at the production site during combining of asphalt-rubber binder materials.

Subsection 401.13 shall include the following:

The PG 64-28WP shall be blended paving asphalt and the CRM combined and mixed together at the production site in a blender unit to produce a homogeneous mixture. The temperature of the blended paving asphalt mixture shall be between 375°F and 440°F when the CRM is added. The CRM shall be combined at the production site and shall contain 100 percent scrap tire CRM, by mass.

The combined materials shall be reacted for a minimum of 45 minutes after incorporation of the CRM and maintained at a temperature between 375°F and 425°F. The temperature shall be at least 45°F below the actual flash point of the asphalt-rubber binder.

If any of the material in a batch of asphalt-rubber binder is not used within 4 hours after the 45minute reaction period, heating of the material shall be discontinued. Any time the asphaltrubber binder cools below 375°F and is reheated shall be considered a reheat cycle. The PG 64-28WP shall not be reheated more than twice. The material shall be uniformly reheated to a temperature between 375°F and 425°F prior to use. Additional scrap tire CRM may be added to the reheated binder and reacted for a minimum of 45 minutes. The cumulative amount of additional scrap tire CRM shall not exceed 10 percent of the total binder mass. Reheated asphaltrubber binder shall conform to the provisions for PG 64-28WP.

During the injection process of the PG 64-28WP into the plant, the Contractor shall take viscosity readings of asphalt-rubber binder from samples taken from the feed line connecting the storage and reaction tank to the HMA plant. The readings shall be taken at least every hour with at least one reading for each batch of asphalt-rubber binder. The Contractor shall log these results, including time and asphalt-rubber binder temperature, and a copy of the log shall be submitted to the Engineer daily. The Contractor shall either notify the Engineer at least 15 minutes prior to each test or provide the Engineer a schedule of testing times. The Contractor shall immediately notify the Engineer if any viscosity reading falls below 1000 Pa \cdot s (x10⁻³) when tested at 185°C.

Subsection 401.15 shall include the following:

The minimum mix discharge temperature for PG 64-28TB and PG 64-28WP shall be 320°F. The minimum delivered mix temperature for PG 64-28TB and PG 64-28WP shall be 280°F.

Subsection 401.17 shall include the following:

Further compaction effort shall not be applied to HMA containing PG 64-28TB or PG 64-28WP when the surface temperature of the mixture falls below 230 °F.

Subsection 401.22 shall include the following:

Facilities for blending and storing PG 64-28WP will not be measured and paid for separately, but

shall be included in the work. Facilities for storing PG 64-28TB will not be measured and paid for separately, but shall be included in the work.

Subsection 403.02 shall include the following:

The desig	2n mix	for hot	mix	asphalt	shall	conform	to the	following:
	D							

Table 403-1									
Property	Test	Value F	or Grading						
	Method	SX(100)	SX(100)						
Air Voids, percent at: N (design)	CPL 5115	3.5 – 4.5	3.5 – 4.5						
Lab Compaction (Revolutions): N (design)	CPL 5115	100	100						
Stability, minimum	CPL 5106	30	30						
Aggregate Retained on the 4.75 mm (No. 4) Sieve with at least 2 Mechanically Induced fractured faces, % minimum	CP 45	60	60						
Accelerated Moisture Sus- ceptibility Tensile Strength Ratio (Lottman), minimum	CPL 5109 Method B	80	80						
Minimum Dry Split Tensile Strength, kPa (psi)	CPL 5109 Method B	205 (30)	205 (30)						
Grade of Asphalt Cement, Top Layer		PG 64-28TB	PG 64-28WP						
Voids in the Mineral Aggregate (VMA) % minimum	CP 48	See Table 403-2	See Table 403-2						
Voids Filled with Asphalt (VFA), %	AI MS-2	65 - 75	65 - 75						
Dust to Asphalt Ratio Fine Gradation Coarse Gradation	CP 50	0.6 - 1.2 0.8 - 1.6	0.6 - 1.2 0.8 - 1.6						

Note: AI MS-2 = Asphalt Institute Manual Series 2

The current version of CPL 5115 is available from the Region Materials Engineer. Note:

Mixes with gradations having less than 40% passing the 4.75 mm (No. 4) sieve shall be Note: approached with caution because of constructability problems.

Gradations for mixes with a nominal maximum aggregate size of one-inch or larger are Note: considered a coarse gradation if they pass below the maximum density line at the #4 screen. Gradations for mixes with a nominal maximum aggregate size of ³/₄ inch or smaller are considered a coarse gradation if they pass below the maximum density line

at the #8 screen.

All mix designs shall be run with a gyratory compaction angle of 1.25 degrees and properties must satisfy Table 403-1. Form 43 will establish construction targets for Asphalt Cement and all mix properties at Air Voids up to 1.0 percent below the mix design optimum.

1 0010 705-2										
Minimum Voids in the Mineral Aggregate (VMA)										
Nominal	***Design Air Voids **									
Maximum Size*, mm (inches)	3.5% 4.0% 4.5%									
37.5 (1½) 11.6 11.7 11.8										
25.0 (1) 12.6 12.7 12.8										
19.0 (¾)	19.0 (¾) 13.6 13.7 13.8									
12.5 (1/2)	14.6	14.7	14.8							
9.5 (¾)	15.6	15.7	15.8							
 The Nominal Maxi than the first sieve interpolate specifie those listed. *** Extrapolate specifie beyond those listed 	 * The Nominal Maximum Size is defined as one sieve larger than the first sieve to retain more than 10%. ** Interpolate specified VMA values for design air voids between those listed. *** Extrapolate specified VMA values for production air voids 									

Table 403-2

The Contractor shall prepare a quality control plan outlining the steps taken to minimize segregation of HMA. This plan shall be submitted to the Engineer and approved prior to beginning the paving operations. When the Engineer determines that segregation is unacceptable, the paving shall stop and the cause of segregation shall be corrected before paving operations will be allowed to resume.

A minimum of 1 percent hydrated lime by weight of the combined aggregate shall be added to the aggregate for all hot mix asphalt.

Acceptance samples shall be taken at the location specified in either Method B or C of CP 41, as determined by the Engineer.

Subsection 403.03 shall include the following:

The Contractor shall construct the work such that all roadway pavement placed prior to the time paving operations end for the year, shall be completed to the full thickness required by the plans. The Contractor's Progress Schedule shall show the methods to be used to comply with this requirement.

Subsection 403.05 shall include the following:

The accepted quantities of hot mix asphalt will be paid for in accordance with subsection 401.22, at the contract unit price per ton for the bituminous mixture.

Payment will be made under:

Pay Item	Pay Unit
Hot Mix Asphalt Grading SX(100)PG 64-28TB	Ton
Hot Mix Asphalt Grading SX(100)PG 64-28WP	Ton

AGGREGATE, ASPHALT RECYCLING AGENT, ADDITIVES, HYDRATED LIME, AND ALL OTHER WORK NECESSARY TO COMPLETE EACH HOT MIX ASPHALT ITEM WILL NOT BE PAID FOR SEPARATELY, BUT SHALL BE INCLUDED IN THE UNIT PRICE BID. WHEN THE PAY ITEM INCLUDES THE PG BINDER GRADE, THE ASPHALT CEMENT WILL NOT BE MEASURED AND PAID FOR SEPARATELY, BUT SHALL BE INCLUDED IN THE WORK.

Subsection 702.01(a) Table 702-1 shall include the following:

REVISION OF SECTIONS 401, 403 AND 702 RUBBERIZED ASPHALT PAVEMENT

		Table 702-1A		
			Specification	
			Grade	
Property	AASHTO			
	Test		PG64-28TB	PG 64-28WP
	Method			
		Original Binder		
Flash Point, Minimum °C	T48		230	230
Solubility, Minimum %	T44		97.5	80
% Rubber Content, %, min.	-		10	10
Viscosity at 135°C,	T316			
Maximum, Pa·s			3.0	3.0
Dynamic Shear,	T315			
Test Temp. at 10 rad/s, °C			64	64
Minimum G*/sin(delta), kPa			1.00	1.00
Ductility @ 4C, 5cm/min, cm, Min.	T 51		40	10
RTFO Test,	CP-L 2215			
Mass Loss, Maximum, %			1.00	1.00
	RTF	O Test Aged Binder		
Dynamic Shear,	T315			
Test Temp. at 10 rad/s, °C			64	64
Minimum G*/sin(delta), kPa			2.20	2.20
Ductility @ 4C, 5cm/min, cm, Min.	T 51		20	5
PAV Aging,	R28			
Temperature, °C			100	100
	RTFO Te	st and PAV Aged Bind	ler	
Dynamic Shear,	T315			
Test Temp. at 10 rad/s, °C			22	22
Minimum G*sin(delta), kPa			5000	5000
Creep Stiffness,	T313			
Test Temperature, °C			-18	-18
Maximum S-value, MPa			300	300
Minimum M-value			0.300	0.300

Table 703 14

The binder formulations for PG 64-28TB and PG 64-28WP shall include the following information:

- 1. Paving Asphalt and Modifiers:
 - (1) Source and grade of paving asphalt.
 - Source and identification (or type) of modifiers used. (2)
 - (3) Percentage of the combined blend of paving asphalt and asphalt modifier by total mass of asphalt-rubber binder to be used.
- 2. Crumb Rubber Modifier (CRM):
 - Source and identification (or type) of scrap tire CRM. (1)
 - (2) Percentage of scrap tire CRM by total mass of the asphalt-rubber blend.
 - If CRM from more than one source is used, the above information is required for (3) each CRM source used.

REVISION OF SECTIONS 401, 403 AND 702 RUBBERIZED ASPHALT PAVEMENT

3. Asphalt-Rubber Binder: The minimum temperature and minimum reaction time in the storage vessel.

The paving asphalt and asphalt modifier shall be combined into a blended mixture that is chemically compatible with the crumb rubber modifier to be used. The tire rubber material shall be totally incorporated into the asphalt cement yielding a homogenous product of a singular composition. The tire rubber shall not settle or phase separate.

PG 64-28TB shall not be diluted with extender oil, kerosene, or other solvents. PG 64-28TB asphalt binder so contaminated shall not be used. Kerosene or other solvents used in the cleaning of equipment shall be purged from the system prior to subsequent use of that equipment.

Subsection 702.01 shall include the following:

(c) Crumb rubber modifier (CRM). Crumb rubber modifier (CRM) shall consist of scrap tire CRM. The scrap tire CRM shall consist of ground or granulated rubber derived from of automobile tires, truck tires, tire buffing, or a combination thereof. Steel and fiber separation may be accomplished by any method. Cryogenic separation, if utilized, shall be performed separately and shall be prior to grinding or granulating. CRM shall be ground or granulated at ambient temperature. Cryogenically produced CRM particles which can pass through the grinder or granulator without being ground or granulated respectively shall not be used. CRM shall not contain more than 0.01 percent wire (by mass of CRM) and shall be free of other contaminants, except fabric. Fabric shall not exceed 0.05 percent by mass of CRM. A Certificate of Compliance certifying these percentages shall be furnished to the Engineer in conformance with the subsection 106.12. The CRM shall be sufficiently dry so that the CRM will be free flowing and not produce foaming when combined with the blended paving asphalt and asphalt modifier mixture. Calcium carbonate or talc may be added at a maximum amount of 3 percent by mass of CRM to prevent CRM particles from sticking together. The CRM shall have a specific gravity between 1.1 and 1.2. Scrap tire CRM shall be delivered to the production site in separate bags and will be sampled and tested separately. CRM material shall conform to the following requirements of ASTM D 297:

	Percent	
Test Parameter	Min.	Max.
Acetone Extract	6.0	16.0
Ash Content		8.0
Carbon Black Content	28.0	38.0
Rubber Hydrocarbon	42.0	65.0

SCRAP TIRE CRUMB RUBBER MODIFIER

REVISION OF SECTIONS 401, 403 AND 702 RUBBERIZED ASPHALT PAVEMENT

The CRM for asphalt-rubber binder shall conform to the gradations specified below when tested in conformance with the requirements in ASTM C 136, except as follows:

- 1. Split or quarter $100 \text{ g} \pm 5 \text{ g}$ from the CRM sample and dry to a constant mass at a temperature between 130°F and 145°F and record the dry sample mass. Place the CRM sample and 5.0 g of talc in a 0.5-L jar. Seal the jar: then shake it by hand for a minimum of one minute to mix the CRM and the talc. Continue shaking or open the jar and stir until particle agglomerates and clumps are broken and the talc is uniformly mixed.
- 2. Place one rubber ball on each sieve. Each ball shall have a mass of 8.5 g \pm 0.5 g, have a diameter of 24.5 mm \pm 0.5 mm, and shall have a Shore Durometer "A" hardness of 50 \pm 5 in conformance with the requirements in ASTM Designation: D 2240. After sieving the combined material for 10 minutes \pm 1 minute, disassemble the sieves. Material adhering to the bottom of a sieve shall be brushed into the next finer sieve. Weigh and record the mass of the material retained on the 850 µm sieve and leave this material (do not discard) on the scale or balance. Observed fabric balls shall remain on the scale or balance and shall be placed together on the side of the scale or balance to prevent the fabric balls from being covered or disturbed when placing the material from finer sieves onto the scale or balance. The material retained on the next finer sieve (425 µm sieve) shall be added to the scale or balance. Weigh and record that mass as the accumulative mass retained on that sieve (425 µm sieve). Continue weighing and recording the accumulated masses retained on the remaining sieves until the accumulated mass retained in the pan has been determined. Prior to discarding the CRM sample, separately weigh and record the total mass of fabric balls in the sample.
- 3. To account for the 5 g of talc added to the sample, determine the mass of passing the 150 μ m sieve (or mass retained in the pan) by subtracting the accumulated mass retained on the 150 μ m sieve from the accumulated mass retained in the pan. If the material retained in the pan has a mass of 5 g or less, cross out the recorded number for the accumulated mass retained on the 150 μ m sieve as the accumulated mass retained in the pan. If the material passing the 150 μ m sieve (or mass retained in the pan and copy the number recorded for the accumulated mass retained on the 150 μ m sieve as the accumulated mass retained in the pan. If the material passing the 150 μ m sieve (or mass retained in the pan) has a mass greater than 5 g, cross out the recorded number for the accumulated mass retained in the pan, subtract 5 g from that number and record the difference next to the crossed out number.

Sieve Size	Scrap Tire CRM	
	Percent Passing	
No. 20 (850 µm)	100	
No. 40 (425 µm)	85-100	
No. 60 (180 µm)	10-50	
No. 80 (150 µm)	5-30	

CRM GRADATIONS
APPENDIX D – Quality Control Data

Aggregate Industries, West Central Region Technical Sarvices Department Project: NH 0641-073 S.A. 16522 Location: SH 34 Bypess 3/8/2012

CDOT Mix Design # : 170947 Accessor Agg ind Mix Design # : 84 (Greeley plant) Grading: SX (100) , PG 64-28 (SGLP / Suncor)

Joint Core Density Quality Level Charts

T upper = \$6.0 T lower = \$8.0

Teet	1		Quality		
Number	Dete	Joint Core	Level	Mean	
1	6/17/09	92.1			
2	8/23/09	01.B	-		
3	6/24/09	91.1	100	91.70	0.53
4	8/26/09	91.5	100	91.86	0.44
5	7/1/09	91.6	100	91.64	0.38
6	7/8/09	91.9	100	91.60	0.33
7	7/7/09	92.3	100	91.68	0.45
8	7/10/08	91.8	100	91.78	0.33
8	7/16/09	92.3	100	81.94	0.35
10	7/16/09	93.1	100	92,24	0.58
11	7/20/09	92.6	100	92.38	0.54
12	7/22/09	83.4	100	92.60	0.70
13	8/18/09	82.8	100	92.64	0.43
14	8/19/09	83.6	100	93.10	0.41
15	6/19/09	93.6	100	93.20	0.47
16					
17					
18					
19					
20					

Qupper	Q lower	P upper	P lower
8.13	6.99	100	100
9.81	8.23	100	100
11.33	9.48	100	100
13.27	10.85	100	100
9.61	8.19	100	100
12.90	11.58	100	100
11.58	11.23	100	100
6.67	7.52	100	100
6.64	8.04	100	100
4.83	6.54	100	100
7.39	11.31	100	100
7.03	12.37	100	100
5.97	11.09	100	100

ClQ

TOPOC		es Depertr	Nort:	•	COOT M	x Devig	n # : 1708	67	*	
	NH 6641 122	-073			Agg ind I Gradient	RX Dee BX (19	600 F; 64 01. P3 64	(Greate)	r plank) 12 / Sunci	ari-
1001001	1: 11 34	Bypeen								
		فاستعاده	int Course		I met Ch		T			
							Tieser	12.4		
Į	Rate	I like Farmer	999	-			-	0.000	Percer	PH
1	6136								_	
2-	8/13/26	95,5	100	98.90	0.91		7.00	39.00	380	- 1 1
1	N1004	10	10	19.00	0.70		14	410	100	1
4	8150		-18-	1.25	0.5		-49-	48	l-188	14
ž.	6163	12	100	9.4	0.01		3.6	477	155	1
-	6160	81	198	2.	0.41			12	100	H
Đ.	61701	- 60	100		0.3		127	478	100	1
11	67600	<u> #12</u>	100		0,63		18	44		-1
Š.	67100	HI2	100	28	0.43		- UH	- 13	10	
14	579/00	89	128	\$1.04	0.2		16	- 20		H
a a	9,790	. PL4	100	81.85	68		607	44	- 30	
17	62369	<u> </u>		11.0				-10-		-
ġ.	82429	<u></u>	- K				2.63	172	-	
	6250	12.6	1 20	8.4	1.00		2.00	130	Ň	
2	6250	10.5	*	6378	0.77		2.87	2.5		
	6250			10.14	0.44		27	200		
	6000	-		86	0.64			287	100	
	10000	81.5	100	40.66	641		411		100	1
	65000	94.1	199	10.62	0.53		6.01	6.44	38	-
H	7100		100	122	- 33		610	200	100	-
	780	54	100	-	0.38			4.16	10	- 1
H	1110	100	1	観労	620		10	4.63	- <u>10</u>	-
	777/04	84.0	節	9.8	. 0.24		- 12	6.8		1
	7/6/00	BI.4	100		0.33		8.30	8.62	100	-
_	7,008	15.6 N 0	100				80	- 12	96	
	7/10/04	46.2	100	127	645		630	4.17	100	10
-	7/10/08		-19-		**				58	- 7
-	7160	11		10.76	15		8.73	18	Ю	- 11
	7/17/0		- 199		0.4			- 172	18	- 1
	7/20/08	1 10	150	0.0	04		1.6	16		1
-	7/2009		-38	- 88-	0.41		1-19-1	- 192		-1
	70200	10	10		0.5		3.0	177	一支	
+	70000	84.4	- 188	9.35	6.1			귀찮		-
	70000	87	100	68	927			13	-100	1
-	1000	- 23-1	- 100 -	14	6.0		H: 1	12.62		-
	72409	80	100	942			389	902	56	1
	en/log		199	94.8	0.23		7.12	10,25	100	1
			100	9122	0.37		481	8,00	100	-
Ξ	61709	-81-	- 100	22.04				4.8	100 1	
	91709 91900 91600		100	93.00 93.02	0.45		4.57	4.0	100	1
	9/17/09 9/19/09 9/19/09 9/19/09 9/19/09	914 914 920		23.91 93.92 93.94 93.94 93.94	0.45		4.80 4.87 4.05 7.80	4.40	100	1
	BYING BYING BYING BYING BYING BYING	1917 1914 1917 1928 1914		82.99 93.82 93.94 93.42	0.45		4.50 4.57 4.05 7,80	4.4 4.17 2.42 4.24	100 100 100	1
	Briggs Briggs Briggs Briggs Briggs	914 914 929 929 934	198	8.9 93.82 93.92 93.94 93.42	0.45		4.80 4.87 4.05 7.80	448	100 100 100	1
	MINOR MINOR MINOR MINOR		889	83.68 93.62 93.64 93.40	0.45		4.57	4.8	100	1
				10.00 93.42 10.42	0.45		4.89	448		1
	Briton Briston Briston Briston Briston		100 100 100 100 100	62.69 93.62 81.64 93.42	0.44 0.45 0.55 0.35		4.90 4.02 7.90	4.0	100 100 100	1
			100 100 100 100	23.49 93.42 93.42 93.42	0.44 0.45 0.55 0.33		4.40 4.02 7,80	4.5	100 100 100	
			100 100 100 100 100	12.69 93.62 20.54 20.42	0.44 0.45 0.33		4.82 4.05 7.80			
			100 100 100 100 100				4.00 4.00 7.00 7.00			
			HERE HERE HERE HERE HERE HERE HERE HERE			- \$4.0	4.82 4.03 7.80 94.0			
			Net Nucle		0.46 0.46 0.55 0.55 0.55	10-34.0	4.62 4.62 4.05 7.80 7.80			
			HE HUSH		0.44 0.45 0.55 0.55 0.55 0.55 0.55 0.55	- 84.0 - 84.0 - 84.0	4.62 4.62 4.63 7.80			
			HE HUSH		0.44 0.45 0.55 0.55 0.55 0.55 0.55 0.55	10-34.0 1	4.82 4.62 4.05 7,80 7,80 96.0	4.17 3.42 4.34 4.34		
			Net Nuclear	RLON STAR STAR STAR STAR STAR STAR STAR STAR	a to a spec. 12	18-34.0 19-39-07 78 710	4.50 4.52 4.05 7,80 9,0 9,0 9,0 9,0 9,0 9,0 9,0 9,0 9,0 9,			
			Net Nuclear	R3.62 93.62 10.64 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.	Les Dag Dag Dag Dag Dag Dag Dag Dag	10-34.0 70-740	4.50 4.52 4.55 7,80 9,0 9,0 9,0 9,0 9,0 9,0 9,0 9,0 9,0 9,			
			Net North		0.44 0.45 0.55 0.33 7 7 8 9 7 8 9 7 9 7 9 7 9 7 9 7 9 7 9 7	10-34.0 70-740	4.50 4.50 4.50 7.30 7.30 94.0 94.0 1077 408 70			
			100 00 100 100 100 Net Nach		0.44 0.45 0.55 0.33 7 1000 7 1000000 7 10000 7 10000000000	(8-84.0)))))))))))))))))))		4.17 3.82 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4		
			Hert Navel	R3.62 93.62 03.64 03.42 03.42 Constitution C		0-34.0 1979/97				
						(8+ S4.D Parager The Tria Star Leve				

Aggregate Industries, West Central Region Technical Services Department Project: NH 0641-073 S.A. 16522 Location: SH 34 Bypess 262012 Corported VMA Country Locat Count

CDOT Mix Design # : 170947 Agg ind Mix Design # : 64 (Greekey plant) Grading: SX (100) , P3 64-28 (SGLP / Suncor)

Corrected VMA Quality Level Charts

Target = 14.6 (Revised 6/18) T upper = 18.8 T lower = 13.4

ed Marian

Test	1		Quality	1						
lunaber	Date	VINA	Lavel	Mean	6		C upper	Q lower	P upper	Pier
1	6/12/09	13.9	_							
2	6/12/09	14.1								
3	6/15/09	14.1	100	14.03	0.12		15.30	5,48	100	10
4	6/15/09	13.7	100	13.95	0.10		9.66	2.87	100	10
5	8/16/08	14.0	100	13.96	0.17		11.00	3.35	100	10
6	8/17/09	14.2	100	14.02	0.19		9.25	3.22	100	10
7	8/16/09	13.7	100	13.84	0.23		8.08	2.35	100	10
8	6/19/09	14.5	98	14.02	0.34		6.20	1.81	100	. 9
9	6/19/09	15.3	95	14.34	0.61		2.39	1.64	100	- 90
10	6/19/09	16.3	- BM	14.80	0.70		1.71	1.71	97	9.
. 11	6/19/19	10.1	85	14.78			1,48	201	54	
12	0/22/08	14.5	80	16.00	0.35		2.31	4.62	98	- 40
13	02308	14.4	88	15.04	0.20		2.72	3.0/	123	10
14	60400	14.7	100	14.96	0.27		3.20	6.00	100	10
10	0/20/08	14.4	100	14.04	0.20			0.34		- 10
17	8/20/08	110	100	44.84	0.15		6.20	0.10	- 100	40
10	6/20/08	19.8	100	14.00	0.10		14	180	100	10
40	6/20/09	10.0	100	14.00	0.36		378	2.85	100	10
20	8/3/04	13.4	0.0	14.92	0.47		318	197	100	
21	7/1/00	14.4	98	14 28	0.44		3.42	1.98	100	
22	7,8,00	127		14.24	0.34		413	2 22	100	
23	7/7/00	14.6		14.39	0.35		407	281	100	
24	7/8/09	15.2	88	14.54	0.51		248	224	99	96
26	7/8/09	14.2	100	14.62	0.38		313	3.24	100	10
28	7/16/09	15.3	99	14.60	0.46		2.21	3.09	89	10
27	7/16/09	14.7	89	14.80	0.45		221	3.09	99	10
28	7/16/09	14.2	87	14.72	0.53		2.05	2.51	96	- Bé
29	7/17/09	15.2	97	14.72	0.53		2.05	2.51	98	96
30	7/20/09	14.5	97	14.78	0.47		2.19	2.96	98	×
31	7/22/09	14.2	97	14.58	D.42		2.96	2.79	98	
32	7/23/08	14.7	97	14.56	0.42		2.96	2.79	96	96
33	7/24/09	14.5	97	14.62	0.37		3.19	3.30	98	99
34	7/27/08	14.1	100	14.40	0.24		5.72	4.08	100	_ 10
36	7/25/09	13.2	89	14.14	0.58		2.88	1.28	99	90
	81/08	-18.8		13.80	0.00		2.08	0.02	- 100	-4
3/	OF IDAVA	14.0	- 11	13.64	0.00		35/	0.70	100	
30										
40										
41										-
12 1										
171				VMA - Spe	c. 13 <i>4</i> - 14	.6 - 15.8				
15.8		****		-	t ag al		-	-	-54	
12.2	6/12 6/10 4	ans ane a	NB 6/19 6/2	13 6425 642	erzs 7/1 Datte	1/7 1.0	7/18 7/19 7	722 7724 77	8 em	J
				VNA-	Quality L	wei		-	- Quelty Lev	3
D		8/80 8/40	R110 8/07	N26 N28 -	70 74 7	7 769 74	18 101 2/2	7 2124 7/24	615E	_
	- 10 14	9-10 W19			Date			- rape 2008		

Aggregate Industries, West Central Region Technical Services Department Project: NH 0641-073 S.A. 15522 Location: 8H 34 Bypese

3/5/2012

62 68 75

12222

100 100 100

1010101010101010101

100

7/9 7/16 7/17 7/22 7/24 7/26 6/10

CDOT Mix Design # : 170947 A000 Agg ind Mix Design # : 54 (Greeley plant) Grading: SX (100), PG 64-28 (SGLP / Suncor)

3.6

Corrected Air Voide Quality Level Charts

Tergel = T upper = T lower = 4.8 2.4

 Defa
 Air Voide

 6/12/04
 2.27

 6/12/04
 2.27

 6/12/04
 2.40

 6/16/08
 2.40

 6/16/08
 2.40

 6/16/08
 2.40

 6/16/08
 2.40

 6/16/09
 2.45

 6/16/09
 2.45

 6/16/09
 2.46

 6/16/09
 2.44

 6/16/09
 2.45

 6/16/09
 2.45

 6/16/09
 2.45

 6/16/09
 2.45

 6/16/09
 2.45

 6/16/09
 2.45

 6/16/09
 2.45

 6/16/09
 2.45

 6/16/09
 3.44

 6/22/09
 3.4

 6/22/09
 3.8

 6/26/09
 4.1

 9/26/09
 4.1

 9/26/09
 4.1

 9/26/09
 4.1

 9/26/09
 4.1

 9/26/09
 4.1

 9/26/09
 4.1

 9/26/09
 4.1

 <t Test Quality Level Meen . Q apper Q lower P upper P lower 2.66 2.59 2.63 2.94 3.07 3.43 3.77 3.90 4.06 4.19 4.14 4.07 4.07 4.29 4.13 4.04 87
 3.25
 0.42

 6.40
 0.53

 6.42
 0.73

 3.47
 1.00

 3.76
 1.22

 3.28
 1.27

 3.47
 1.00

 3.76
 1.22

 3.78
 1.22

 3.78
 1.42

 1.33
 2.66

 1.43
 1.42

 1.33
 2.66

 1.33
 2.67

 1.33
 2.68

 1.33
 2.63

 1.33
 2.63

 1.33
 2.63

 1.34
 4.02

 1.35
 3.02

 1.36
 3.13

 1.37
 3.64

 1.27
 2.76

 1.85
 3.00

 1.85
 3.02

 1.85
 3.02

 1.86
 3.03

 3.83
 4.80

 3.80
 5.80

 3.80
 5.83

 3.83
 3.83

 3.84
 3.83

 3.84</t 0.42 0.35 0.84 0.63 0.73 0.76 0.82 0.46 0.45 0.46 0.43 0.46 0.43 0.39 0.40 0.37 66 75 84 B 1.09 1.09 1.30 1.54 2.01 1.47 1.35 222606 (23) 622606 (23) 622606 (23) 622606 (23) 622606 (23) 77100 (24) 77100 (24) 77000 (25) 77400 (25) 77400 (25) 77400 (25) 77400 (25) 77400 (25) 77400 (25) 77400 (25) 77400 (25) 77400 (25) 77400 (25) 77400 (25) 772506 A/ ž 0.60 0.69 0.49 0.48 0.48 0.42 0.37 0.37 0.37 0.37 0.24
0.28
0.27 99 99 89 95 95 0.35 4.48 3.25 3.67 2.78 2.14 2.42 0.77 0.83

707

ens ens ens ens ens exa eza eza eza eza ma Date

Project S.A. 18	NH 0541	073			Agg Ind Milo Grading: S)	Design#: 64 (100), PG 64	(Graein 28 (SQI	y plant) .P/Sunce	ж)	
Locatio 34/3012	n: SH 34 Aephalt	Bypese Content	Quality L	evel Chi	- Inte-Lot #2	Target = T upper =	4	(Adjuelod I	1,290(D9)	
Test			Quelity			1				
Number	Dete	AC.	Level	Meen		Q upper	Q lenner	P.apper	Plower	F
<u>_</u>	0/2010	6.36	<u> </u>	<u> </u>						
- 2	8/29/09	5.44	160	6.40	0.65	10.91	2.18	100	100	- Anni
4	6/24/08	5 54	100	5.40	0.04	13,21	2.58	100	100	Ann
8	5/20/09	6.43	100	6.40	0.04	13.86	2.91	100	100	EEC
8	6/30/06	6.48	100	5.43	6.03	17.54	4.86	100	120	A90
<u>, , , , , , , , , , , , , , , , , , , </u>	7/1/00	\$.30	100	5,42	003	15.36	1.97	100	100	EEC.
	7602	5.40	100	6.41	0.03	30.04	4.03	102	100	1 CON
10	7/6/09	5.34	100	5.40	0.04	11.77	2.30	100	100	land
11	1/7/08	6.44	100	5.39	9.04	14.14	2.63	100	100	EEC
12	7/7/09	5.42	100	5.40	0,04	13.38	2.87	100	100	Age
13	7/0.00	5,53	97	5.43	0.07	6.66	1.62	100	97	SEC
14	7/8/09	5.82	96	5.44	0.07	6.40	176	100	87	1880) 1880)
-18-	7/000	5.30	1	343	0.06	5.62	1.58	100	86	Acr 4
17	7/10/00	8.21	76	4.38	0.13	4.03	9.68	100	75	EEC
18	7/18/09	6.47	74	5.37	0.11	4.68	0.66	100	74	EEC
10	7/10/04	6.36	. 69	5.35	0 10	6.78	0.50	100		E&C
20	7/19809	5.34		0.36	0.00	0.09	0.63	100	73	ŝ
22	7/17/09	6.50	78	6.41	012	4.07	0.90	104	78	1 Acres 1
23	7/17/00	5.47	76	8.42	0.11	4.28	1.04	100	78	(EEC
24	7/20/09	5.61	89	5.48	0.06	8.86	2.84	100	99	400
25	7/20/04	6.44	100	5.49	0.04	10.64	6.01	100	100	EEC
24	7/22/09	5.41	100	5.47	0.04	10.43	3,99	190	100	Acch
27	7/20/00	5.44	100	5.45	0.04	11.78	4.07	100	100	Ann 4
29	7/23/08	5.33	89	6.42	0.05	9,00	2.20	100	99	EEC
30	7/24/09	5.40	39	5.41	0.00	9.34	2.10	100	89	Apg is
31	7/24/08	6.10	67	6.38	0.13	4.25	0.45	100	67	EEC
32	7/27/09	6.34		6,34	0.12	4.72	0.52	100	62	A09.1
34	7(20)04	5.22	47	5.28	0.00	8.50	JI 20	100	-13-	EEC.
25	7.28/09	5,38	38	6.27	0.09	722-	-0.32	100	36	Appli
	6/17/08	8.51	00	5.34	0.11	6.18	0.41	100	66	Agg li
87	B/17/09	6.46	71	5.37	0.12	4.68	0.68	100	71	FEC
	8/16/09	5.60	81	5,41	- 0.12	408	0.69	100	- 85	EEC
40				0.40			2.00	190		1
41							_			1
42										1
					H					
45					<u> </u>					1
					· · · ·					,
82 11 89			A.,	Aalt Contr	int - Spec. 6.3 - 6	8-69		-8-30 -+-6		
63 50		71 77	7 10 7	10 TY10 TY	e 7/16 7/17 7220 2	102 Tes Tex 1/107	7/20 6/17 4		1	
			A	phalt Co	niant - Quality L	ivel		Austry Level		
11					n ang terang sa	مىرىنى ئىرى مەربىيە ئېچىنى	e conce e je conce			

Technical Services Department utes, meas conserving Project: NH 0641-073 S.A. 16522 Location: SH 34 Bypass

3/6/2012

AGGREGATE CDOT Mix Design # : 170947 Agg Ind Mix Design #: \$4 (Greeley plant) Greding: SX (100) , PG 64-28 (SGLP / Suncor)

> Target = T upper = T lower = 5.7 6.0 5.4

Test			Quality		
Number	Date	AC	Level	Mean	
1	6/12/09	5.79			
2	6/12/09	5.69			
3	6/12/09	5.85	100	5.76	0.08
4	6/12/09	6.68	100	5.80	0.08
5	8/12/09	5.89	100	5.82	0.08
6	6/12/09	5.68	100	6.84	0.06
7	81509	5.53	90	5.61	0.16
6	6/15/09	6.89	93	5.77	0.18
8	6/16/08	5.48	91	5.69	0.19
10	6/16/09	5.71	95	5,86	0.16
11	8/17/08	5.17	69	5.52	0.22
12	6/17/09	5.75	71	5.56	0.24
13	6/18/09	5.42	66	5.51	0.24
14	6/16/09	5.50	58	5.53	0.24
15	6/19/09	5.58	87	5.50	0.22
18	6/19/09	5.54	94	5.56	0.12
17	8/18/09	5.55	98	5.54	0.07
18	6/19/09	6.69	100	6.57	0.02
19	6/19/09	5,40	96	5.53	0.08
20	6/22/09	5,46	92	5.61	0.08
21	6/22/08	6.52	- 92	5.50	0.06
22	6/23/09	6.54	92	6.50	0.07
23	6/Z3/09	5.51	94	5.49	0.06
24	6/24/09	5.66	98	5.64	0.07
25	6/24/09	5.58	99	5.56	0.06
26	6/25/09	5.50	89	5.56	0.06
27	6/25/09	5.50	99	5.55	0.07
28	6/26/09	5.35	85	5.62	0.11
29	8/26/09	5.51	85	5.49	0.09
30	6/26/09	5.41	Π	6.45	0.07
31					
32					
33					

Asphalt Content Quality Level Charts

Q upper	C lower	P upper	P lower	1
]E£C
				EEC .
2.76	4.66	100	.100	EEC
2.38	4.80	100	100	EEC
2.18	5.09	100	100	EEC
1.93	5.21	100	100	Agg ind
1.25	2.62	90	100	EEC
1,41	2.34	93	100	Agg Ind
1.60	1.54	96	95	EEC
2.15	1.82	99	96	Agg ind
2.23	0.53	99	70	EEC
1.82	0.66	87	74	Agg Ind
2.10	0.45	99	67	EEC
1.99	0.64	- 88	70	Agg Ind
2.27	0.47	89	68	Agg Ind
3.58	1.48	100	\$4	EEC
6.82	2.00	100	98	EEC
18.34	7.25	100	100	EEC
6.11	1.72	100	96	EEC
6.42	1.41	100	92	EEC
6.61	1.39	100	92	Agg Ind
B.76	1.39	100	92	EEC
9.11	1.53	100	94	Agg Ind
8.81	1,94	100	98	EEC
7.54	2.79	100	99	Agg Ind
7.11	2.54	100	66	EEC
6.67	2.22	100	68	Agg Ind
4.25	1.04	100	85	EEC
5.87	1.04	100	85	EEC
7.70	0.76	100	77	Agg Ind

Technical Services Department (Project: NH 0641-073 / S.A. 16522 (Location: SH 34 Bypass

CDOT Mix Design # : 170947 AG Agg Ind Mix Design # : 64 (Greeley plant) Græding: SX (100) , PG 64-28 (SGLP / Suncor)

Gradation Test Result Charts

	Range	100.0	90-199	60-92	67-67	42-52		18-26			3.8-7.8	3.0
	Mean	106	96	- 14	62	46	33.5	21.9	13.3	8.3	5.2	3.1
	Std. Dev.	0.0	1.3	1.6	2.0	1.7	1.1	1.1	0.9	1.0	0.52	
Test												
Number	Date	3/4"	1/2**	3/8*	#4	#8	#16	#30	#50	#100	No. 200	Moisture.
1	6/12/09	100	94	83	68	45	32	20	12	7.0	4.3	3.8
2	6/15/09	100	95	86	62	47	34	22	14	8	5.8	3.5
3	6/16/09	100	84	85	60	47	34	22	13	8	5.0	3.4
4	6/16/09	100	95	68	62	47	34	22	14	9	5.8	3.4
5	6/17/09	100	95	84	58	45	33	21	13	7	4,4	3.2
6	6/18/09	100	95	86	62	47	34	22	14	9	5.6	3.4
7	6/19/09	100	95	85	58	44	32	20	12	7	4.2	3.6
8	6/22/09	100	96	87	61	47	34	22	15	9	5.4	3.2
9	6/23/09	100	95	86	62	47	34	22	14	9	5.8	3.4
10	6/24/09	100	94	85	-61	44	34	22	13	9	5.0	3.2
11	8/25/09	100	96	87	63	43	34	22	14	9	5.8	3.2
12	6/26/09	100	83	84	59	44	33	23	12	9	5.8	3.3
13	8/29/09											3.1
14	6/30/09	100	96	87	64	50	35	22	13	7	4.4	3.1
15	7/1/09	100	95	85	62	48	33	20	12	8	4.7	3.0
18	7/8/09	100	58	68	64	50	34	23	13	8	5.2	3.5
17	7/7/09	100	95	85	63	48	32	22	13	8	5.1	3.2
18	7/8/09	100	96	86	64	45	32	23	13	9	5.4	3.2
19	7/9/09	100	98	88	65	46	34	21	13	7	5.2	3.1
20	7/10/09	100	9 5 ,	86	62	46	34	ß	14	9	6.7	2.9
21	7/16/09	100	94	84	61	47	32	21	12	6 ·	4.8	2.9
22	7/17/09	100	96	88	62	48	35	22	13	7	4.5	2.5
23	7/20/09	100	87	89	65	49	34	22	14	8	4.8	2.3
24	7/22/09	100	96	87	62	47	32	20	14	8	5.2	2.5
25	7/23/08	100	95	69	64	45	34	23	14	8	5.8	2.4
26	7/24/09	100	94	63	60	45	34	23	14	9	5.8	2.3
27	7/27/09	100	97	84	62	46	36	24	15	9	5.3	2.3
28	7/28/09	100	\$2	85	60	45	34	22	15	9	5.8	2.5
29	8/17/09	100	94	5 6	61	48	34	22	13	9	5.3	3.7
30	8/18/09	100	96	86	61	48	32	22	12	9	6.1	3.5
31	8/19/09	100	94	87	64	45	32	24	13	10	5.5	3.3
32												
33												
34												
35												

Technical Services Department Project: NH 0641-073 S.A. 16522 Location: SH 34 Bypass

CDOT Mix Design # : 170847 Agg Ind Mix Design # : 64 (Greekey plant) Grading: SX (100), PG 64-26 (SGLP / Suncor)

1/2" Sleve

T upper = 100 T lower = 90

3/5/2012

Quality Dete 06/12 08/15 Peesing 94 95 Level Mean 8 100 100 94.33 94.50 94.60 94.60 94.60 0.68 0.68 0.55 06/18 94 95 06/17 06/18 06/19 100 100 100 100 100 96 96 96 96 96 96 0.45 08/22 95.20 95.20 95.00 95.20 94.80 0.45 0.45 0.71 0.84 1.30 1.30 06/24 94 96 100 100 100 100 06/25 06/26 06/30 93 93 95 12 94.80 94.80 1.30 14 07/01 15 18 17 07/06 98 95.56 07/06 07/07 07/08 07/09 07/10 07/16 07/16 07/17 07/20 95.96 95.96 96.98 96.38 96.48 96 96 1.09 1.45 1.37 1.46 1.31 1.25 1.23 1.19 98 18 19 20 21 22 95 94 96 97 95.72 95.77 95.94 95.83 95.73 07/20 07/22 07/23 07/24 07/27 07/28 08/17 08/18 08/19 95 95 99 99 23 24 25 26 27 95.56 96.60 94.60 94.34 94.54 94.58 1.25 1.34 1.82 99 99 94 97 96 96 96 92 94 1.84 28 29 30 31 98 94 1.97

Q upper	Q lower	P upper	P lower
	_		
0.04	7.64	400	400
9.81	7.51	100	100
9.53	7.79	100	100
9.66	8.40	100	100
11.63	10.73	100	100
11.63	10.73	100	100
10.73	11.63	100	100
10.73	11.63	100	100
7.07	7.07	100	100
5.74	6.22	100	100
3.99	3.66	100	100
3.89	3.68	100	100
3.99	3.68	100	100
2.63	3.17	100	100
2.63	3.14	89	100
3.71	5.47	99	100
2.49	4.39	99 1	100
2.58	4.73	89	100
2.93	3.92	99	100
3.23	4.40	99	100
3.16	4.63	69	100
3.38	4.72	99	100
3.80	4.83	99	100
3.56	4.46	99	100
3.28	4.17	98	100
2.97	2.53	98	99
3.08	2.36	99	99
2.78	2.30	88	89
2.78	2.33	89	88

Technical Services Department Project: NH 0641-073 S.A. 16522

Location: SH 34 Bypess

3/8" Sleve

T upper = \$2 3/5/2012 T lower = 80

AGORIGATE

CEOT Mix Design # : 170947

Agg Ind Mix Design # : \$4 (Greeley plant) Grading: SX (100) , PG 64-28 (SGLP / Suncor)

Test		%	Quality							
Number	Date	Passing	Level	Mean		7 1	Q upper	Q lower	P upper	Plower
1	06/12	83								
2	06/15	96				1 1				
3	06/18	85	100	84.67	1.53	7 1	4.80	3.06	100	100
4	05/16	86	100	85.00	1.41	1 1	4.95	3.54	100	100
5	06/17	84	100	84.80	1.30	1 1	5.52	3.68	100	100
6	06/18	86	100	86.40	0.89	1 1	7.38	6.04	100	100
7	06/19	85	100	85.20	0.84	1 1	8.13	6.22	100	100
6	08/22	87	100	85.60	1.14	1	5.61	4.91	100	100
9	06/23	68	100	65.60	1.14	7 [5.01	4.91	100	100
10	06/24	85	100	85.80	0.64	1 [7.41	6.93	100	100
11	06/26	87	100	88.00	1.00] [8.00	6.00	100	100
12	06/26	84	100	85.80	1.30] f	4.78	4.45	100	100
13	06/30	87	100	85.80	1.30] [4.78	4.45	100	100
14	07/01	85	100	85.68	1.31		4.63	4.34	100	100
15	07/08	88	100	86.26	1.55	1 [3.70	4,03	100	100
18	07/07	85	100	85.60	1.62	1 [3.63	3.59	100	100
17	07/08	86	100	86.14	1.29] [4.54	4.76	100	100
18	07/08	88	100	88.28	1.41] [4.07	4,43	100	100
19	07/10	66	100	\$6.32	1.37	16	4.14	4.61	100	100
20	07/18	64	100	85.58	1.33] [4.84	4.18	100	100
21	07/17	68	100	85.97	1.55] [3.89	3.85	100	100
22	07/20	89	100	86.40	1.82] [3.07	3.51	100	100
23	07/22	87	100	86.48	1,70] [3.25	3.81	100	100
24	07/23	89	100	66.76	1.80] [2.91	3.76	100	100
25	07/24	83	100	86.38	2.07] [2.71	3.08	100	100
26	07/27	84	96	86.40	2.79	1 [2.01	2.29	100	8 8
27	07/28	85	99	85.60	2.41	1 [2.66	2.33	100	90
28	06/17	66	99	85.32	2.28] [2.93	2.33	100	96
29	06/18	68	99	85.12	1.69] [3.64	2.71	100	98
30	06/19	87	100	85.96	1.65] [3.68	3.63	100	100
- 31						1 [

Technical Services Department Project: NH 0641-073 S.A. 16522 Location: SH 34 Bypass

CDOT Mix Design # : 170947 ADDREGATE Agg Ind Mix Design # : 64 (Greeley plant) Grading: SX (100) , PG 64-28 (SGLP / Suncor)

4 Şieve

T upper = 87 7 lewer = 57 3/5/2012

Teet		*	Quality							
Number	Dete	Passing	Level	Mean		1 0	Qupper	Q lower	Pupper	P lowe
1	08/12	56				1 F				
2	06/15	62				1 7				
3	06/16	80	100	60.00	2.00	1 1	3.60	1.50	100	100
4	06/16	82	100	80.60	1.91	1	3.39	1.83	100	100
5	06/17	58	96	60.00	2.00	1 1	3.50	1.50	100	96
Ð	06/16	62	100	80.80	1.79	1 F	3.47	2.12	100	100
7	06/19	58	95	80.00	2.00	1 [3.50	1.50	100	95
8	06/22	61	95	60.20	2.05	1 F	3.32	1.58	100	95
9	06/23	62	95	60.20	2.05	1 E	3.32	1.56	100	96
10	06/24	61	39	60.80	1.64	1 1	3.77	2.31	100	- 99
11	06/25	63	90	61.00	1.87	1 F	3.21	2.14	1D0	99
12	05/26	59	100	61.20	1.48	1 1	3.91	2.83	100	100
13	06/30	64	100	61.60	1.92	1 F	2.70	2.50	100	100
14	07/01	62	100	61.82	1.93	1 1	2.69	2.50	100	100
15	07/06	64	99	62.46	211	1 1	2.15	2.69	99	100
18	07/07	63	98	62.36	2.09	1 .	2.22	2,57	89	- 99
17	07/08	64	99	63.38	1.00	1 1	3.63	6.39	99	100
18	07/09	86	99	63.62	1.29	1 1	2.63	5.14	99	100
19	07/10	62	99	63.56	1.38	1 1	2.49	4.76	99	100
20	07/18	61	99	62.82	1.98	1 1	2.25	3.13	99	100
21	07/17	62	99	62.68	1.70	1 1	2.54	3.35	99	100
22	07/20	65	99	63.01	1.78	1 1	2.24	3.38	99	100
23	07/22	62	99	62.89	1.69	1 1	244	3,49	- 99	100
24	07/23	64	89	B3.01	1.62	1 1	2.46	3.71	88	100
25	07/24	60	89	62.71	1.80	1 1	2.38	3.17	99	100
26	07/27	62	99	62.65	1.72	1 1	2.53	3.28		100
27	07/28	60	98	61.60	1.67	1 1	3.23	2.75	89	96
28	08/17	61	99	81.44	1.68	1	3.34	2.67	100	99
29	08/18	61	100	60.84	0.65		7.22	4.50	100	100
30	08/19	64	99	61.60	1.42		3.80	3.24	100	99
31						1				

Aggregate industries, west Central Region Technical Services Department Project: NH 0641-073 S.A. 16622 Location: SH 34 Bypase

3/6/2012

CDOT Mix Design # : 170947 Agg ind Mix Design #: 64 (Greeley plant) Grading: SX (190) , PG 64-28 (SGLP / Suncor)

#8 Sleve

Tupper«δ2 Tlower=42

Tost		×	Quality		
Number	Date	Passing	Level	Mean	8
1	06/12	45			
2	06/15	47			
3	06/16	47	100	48.33	1.15
4	06/16	47	100	46.50	1.00
5	06/17	45	100	48.20	f.10
6	06/18	47	100	48.60	0.69
7	06/19	44	100	46.00	1.41
8	06/22	47	100	46.00	1.41
	06/23	47	100	46.00	1.41
10	06/24	44	99	45.80	1.64
11	06/26	43	95	45.00	1.87
12	06/26	44	95	45.00	1.87
13	06/30	50	69	45.60	2.88
14	07/01	48	89	45.74	2.98
15	07/06	50	88	48.96	3.32
16	07/07	48	85	47.88	2.48
17	07/08	45	98	48.12	2.03
18	07/09	48	98	47.34	1.87
19	07/10	48	98	47.06	1.69
20	07/16	47	98	48.44	0.90
21	07/17	48	96	48.70	1.02
22	07/20	49	96	47.03	1.28
23	07/22	47	96	47.03	1.18
24	07/23	45	98	46.80	1.30
25	07/24	45	96	46.62	1.35
26	07/27	46	100	46.40	1.67
27	07/28	45	100	45.60	0.89
28	08/17	46	100	45.38	0.52
29	06/16	48	100	45.96	1.23
30	06/19	45	100	46.02	1.19
31					

4.91	3.75	100	100
5.50	4.50	100	100
5.29	3.63	100	100
6.04	5.14	100	100
4.24	2.83	100	100
4.24	2.83	100	100
4.24	2.83	100	100
3.77	2.31	100	96
3.74	1.60	100	95
3.74	1.60	100	95
2.22	125	99	90
2.10	1.25	99	90
1.52	1.49	94	84
1.66	2.37	96	99
1.01	3.02	98	100
2.50	2.86	99	99
2.60	2.68	99	99
6.20	4.85	59	99
5.18	4.59	88	99
3.90	3.94	99	99
4.21	4.25	99	89
4.01	3.71	98	99
3.99	3.43	99	89
3.35	2.63	100	100
7.15	4.02	100	100
12.69	6,48	100	100
4.91	3.25	100	100
5.03	3.38	100	100

Qupper Qlower Pupper Plower

Technical Services Department Project: NH 0641-073 S.A. 16622 Location: SH 34 Bypase

 CDOT Mix Design # : 170947
 ADDRESARI

 Agg ind Mix Design # : 64 (Greeley plant)
 Grading: SX (100), P3 64-26 (SGLP / Suncor)

30 Sleve

T upper ≖ 26 T lower = 18

3/5/2012

P lower

8888888

100 100 100

Test		%	Quality					
Number,	Date	Passing	Lavel	Mean		Q upper	Q lower	P upper
1	06/12	20						
2	06/15	22						
3	06/16	22	100	21.33	1.15	4.04	2.89	100
4	06/16	22	100	21.60	1.00	4.50	3.50	100
5	06/17	21	100	21.40	0.89	5.14	3.80	100
6	06/18	22	100	21.80	0.45	9.39	6.50	100
7	06/19	20	100	21.40	0.69	5,14	3.80	100
8	06/22	22	100	21.40	0.69	5.14	3.60	100
9	06/23	22	100	21.40	0.69	5.14	3.60	100
10	06/24	22	100	21.60	0.89	4.92	4.02	100
11	06/25	22	100	21.60	0.89	4.92	4.02	100
12	06/28	23	100	22.20	0.45	8.50	9.39	100
13	06/30	22	100	22.20	0.45	8.50	9.39	100
14	07/01	20	100	21.75	1.18	3.60	3.19	100
15	07/06	23	100	22.02	1.37	2.90	2.93	100
16	07/07	22	100	21.98	1.38	2.93	2.87	100
17	07/08	23	100	21.90	1.33	3.09	2.94	100
16	07/09	21	99	21.62	1.44	3.03	251	100
19	07/10	22	100	22.04	1.03	3.85	3.93	100
20	07/18	21	100	21.62	0.68	5.10	4.01	100
21	07/17	22	100	21.60	0.61	5.43	4.44	100
22	07/20	22	100	21.66	0.75	5.75	4.85	100
23	07/22	20	100	21.45	0.91	4.89	3.78	100
24	07/23	23	100	21.62	1.00	4.39	3.63	100
25	07/24	23	100	21.76	1.04	4.09	3.63	100
26	07/27	24	66	22.40	1.62	2.37	2.90	98
27	07/28	22	96	22.40	1.52	2.37	2.90	90
28	06/17	22	100	22.88	0.76	4.13	6.45	100
29	06/18	22	100	22.68	0.84	3.93	5.55	100
30	08/19	24	100	22,82	0.96	3.31	5.02	100
31								

Technical Services Department Project: NH 0641-073 S.A. 16522 Location: SH 34 Bypass

 CDDT Mix Design # : 179947
 Addesive

 Agg (nd Mix Design # : 64 (Greeley plant)
 Grading: SX (100) , PG 54-26 (SGLP / Suncor)

	Tupper = 7.8	3/6/2012
# 200 Sleve	7 iower = 3.8	

Teet		*	Quality							
Number	Date	Presing	Level	Mean		ם נ	upper	Q lower	P upper	P lower
1	6/12	4.3] [_		
2	8/15	5.8				1 F				
3	8/18	5.0	100	5.03	0.75	1 F	3.69	1.64	100	100
4	8/16	6.8	100	5.23	0.72	1 Г	3.58	1.97	100	100
5	6/17	4.4	100	5.08	0.73	1 [3.77	1.73	100	100
6	6/18	5.6	100	5.36	0.64	1 [3.62	244	100	100
7	6/19	4.2	97	5.04	0.76	1 [3.66	1.65	100	97
8	6/Z2	5,4	97	5.12	0.77	1 1	3.48	1.72	100	97
9	6/23	5.8	97	5.12	Q77	1 Г	3.48	1.72	100	\$7
10	6/24	5.0	29	5.24	0.67	1 Г	3.82	2.15	100	99
11	6/26	5.8	99	5.24	0.67	1 Г	3.82	2.15	100	99
12	6/26	5.8	100	5.56	0.38	1 1	6.26	4,82	100	100
13	B/30	4.4	100	5.38	0.64	1 1	3.82	2.44	100	100
14	7/1	4.7	99	5.14	0.64	1 F	4.18	2.10	100	99
15	7/6	6.2	99	5,18	0.63	1 1	4.13	2.16	100	99
16	7/7	5.1	99	6.04	0.53	1 1	5.19	2 33	100	99
17	7/8	5.4	100	4.98	0.40	1 -	7.03	2.87	100	100
18	7/9	5.2	100	5.12	0.26	1 [10.35	5.10	100	100
19	7/10	5.7	100	5.32	0.24		10.39	6.37	100	100
20	7/16	4.8	100	5.24	0.34	1 🗆	7,82	4.28	100	100
21	7/17	4.5	100	5.12	0.43	1 Г	6.30	3.09	100	100
22	7/20	4.8	100	5.07	0.41	1 1	6.70	3.12	100	100
23	7/22	5.2	100	5.09	0.38	1 6	7.15	3.39	100	100
24	7/23	5.6	100	5.14	0.39	1 [6.74	3.41	100	100
25	7/24	6.8	100	5.21	0.43	1 1	6.09	3.31	100	100
28	7/27	5.3	100	5.34	0.38		6.39	4.00	100	100
27	7/28	5.9	100	5,56	0.30	1 🖻	7,35	5.77	100	100
28	8/17	5.3	100	5.58	0.28	1 17	8.00	8.41	100	100
29	8/16	6.1	100	5.48	0.35	1	6.64	4.81	100	100
30	8/19	5.5	100	5.42	0.30	1 -	7.85	5.34	100	100
31										

.....

PRODUCTION SAMPLE TEST REPORT

HOT MIX ASPHALT

845 Nevejo Sincel Deriver, CO 80204 303.975.9969, Fm: 303.975.9969

REPORT DATE: August 7, 2009 MIX DESIGN NO.: 251809 GYRATIONS, INITIAL - DESIGN: 8 - 100 DATE SAMPLED: August 3, 2009 DATE RECEIVED: August 3, 2009 DATE TESTED: August 4, 2009 SAMPLED BY: Client SAMPLE LOCATION: Detword

PROJECT: US 34 Bypaes Crumb Rubber WesTest PROJECT NO.: 258809 CLIENT: Aggregate Industries John Cheever 1705 S. Acoma Street Denver, CO 60223

MATERIAL DESCRIPTION: SX (100) PG 64-28 TB SAMPLE NO.: 1

Sieve Size	Sample Percent	Job Mix	CDOT Grading	Production Gradation
0.010 020	Passing	Formula	Specification	Tolerance
1 - 1/2"				
1"				
3/4"				
1/2"				
3/8"				
#4				
#8				
#16				
#30				
#50				
#100				

Test Procedure	Production Sample Results	Mox Design Tolerance / Target
ASPHALT CEMENT CONTENT (%)		
Nuclear Method (CP 85)	5.16*	64.54
Ignition Method (CP-L 5120)**	5.38	- 5.3 - 5.9
THEORETICAL MAXIMUM SPECIFIC GRAVITY (CP 51)	2.457	2.439
THEORETICAL MAXIMUM DENSITY (PCF)	152.9	151.8
VOIDS IN TOTAL MIX (%) (CP-L 5115)		
Number 1 STRATIONS (INFORMATION ONLY)	11.1	
NDEBION GYRATIONS	4.6	2.7 - 5.1
TEST DATA @ NDESIGN GYRATIONS		
BULK SPECIFIC GRAVITY (CP 44)	2.344	2.344
VOIDS IN MINERAL AGGREGATE (%) (CP 48)	14.5	13.7 - 16.1
VOIDS FILLED WITH ASPHALT (%)	68.3	73.8
HVEEM STABILITY (CP-L 5106)	47	30 Min.
COMPACTION TEMPERATURE (°F)	300	300
LOTTMAN MOISTURE SENSITIVITY TEST RESULTS (CP-L	5109, Method B)	
AVERAGE SPECIMEN VOID CONTENT (%)	7.5	6.0 - 8.0
AVERAGE SATURATION (%)	88	
AVERAGE DRY TENSILE STRENGTH (PSI)	08	30 Min.
AVERAGE CONDITIONED TENSILE STRENGTH (PSI)	63	
TENSILE STRENGTH RATIO (%)	79	70 Min.

Denotes deviation from specification.
 " Unconnected ignition burn

PRODUCTION SAMPLE TEST REPORT

HOT MIX ASPHALT

845 Navajo Street Denver, CO 80204 303.975.9959, Fax: 303.975.9969 REPORT DATE: August 7, 2009 MIX DESIGN NO.: 251809 GYRATIONS, INITIAL - DESIGN: 8 - 100 DATE SAMPLED: August 4, 2009 MATE RECEIVED: August 5, 2009 DATE TESTED: August 5-6, 2009 SAMPLED BY: Client SAMPLE LOCATION: Delivered

PROJECT: US 34 Bypass Crumb Rubber WesTest PROJECT NO.: 258809 CLIENT: Aggregate Industries John Cheever 1705 S. Acoma Street Denver, CO 80223

MATERIAL DESCRIPTION: SX (100) PG 64-28 TB SAMPLE NO.; 3

	Sample	Job	CDOT	Production
Sieve Siz	e Percent	Mix	Grading	Gradation
	Pessing	Formula	Specification	Tolerance
1 - 1/2				
1"				
3/4"				
1/2"				
3/8*				
#4				
#8				
#16				
#30				
#50				
#100				
#200				
AIX PROPERT	ES			
			Production	Mix
	Test Procedure		Sample	Design
			Results	Tolerance / Target
SPHALT CEM	ENT CONTENT (%)			
	Nuclear Method (CP 85)		5.19*	5.3 - 5.9
HEORETICAL	MAXIMUM SPECIFIC GRA	VITY (CP 51)	2.441	2.439
HEORETICAL	MAXIMUM DENSITY (PCF)	151.9	151.8
OIDS IN TOT	L MIX (%) (CP-L 5115)			
	NHTAL GYRATIONS (INFO	DRMATION ONLY)	10.9	
	NDESKIN GYRATIONS		4.2	2.7 - 5.1
EST DATA @	NDESIGN GYRATIONS			
	BULK SPECIFIC GRAVITY	(CP 44)	2.339	2.344
	VOIDS IN MINERAL AGG	REGATE (%) (CP 48)	14.7	13.7 - 16.1
	VOIDS FILLED WITH ASP	HALT (%)	71.6	73.8
	HVEEM STABILITY (CP-L	5106)		
	COMPACTION TEMPERA	TURE ("F)	300	300
OTTMAN MC	DISTURE SENSITIVITY T	EST RESULTS (CP-I	5109, Method B)	
VERAGE SPE	CIMEN VOID CONTENT (%)		
VERAGE SAT	URATION (%)			
VERAGE DRY	TENSILE STRENGTH (PS)		
VERAGE CON	DITIONED TENSILE STRE	NGTH (PSI)		
ENSI E STRE	NGTH RATIO (%)			1

* Denotes deviation from specification.

DEWEIMEN BV-

PRODUCTION SAMPLE TEST REPORT

545 Navajo Street Detwer, CO 80204 303.975.9959, Fex: 303.976.9968

ŝ

HOT MIX ASPHALT

REPORT DATE: August 19,2009 MIX DESIGN NO.: 251909 GYRATIONS, INITIAL - DESIGN: 8 - 100 DATE SAMPLED: August 10, 2009 DATE RECEIVED: August 10, 2009 DATE TESTED: August 13, 2009 SAMPLED BY: Client SAMPLE LOCATION: Delivered

PROJECT: US 34 Bypass Crumb Rubber WesTest PROJECT NO.: 258609 CLIENT: Aggregate Industries John Cheever 1705 S. Acoma Street Denver, CO 80223

MATERIAL DESCRIPTION: SX (100) PG 64-28 WP SAMPLE NO.: 1-WP

AGGREGATE P	PROPERTIES (CP - 31A &	31B)

	Sample	Job	CDOT	Production
Sieve Size	Percent	Mix	Grading	Gradation
	Passing	Formula	Specification	Tolerance
1 - 1/2"				
1*				
3/4*				
1/2"				
3/8"				
#4				
#8				
#16				
#30				
#50				
#100				
#200				

	Production	Mix
Test Procedure	Sample	Design
	Results	Tolerance / Target
ASPHALT CEMENT CONTENT (%)		
Nuclear Method (CP 85)	5.91	5.8 - 6.4
THEORETICAL MAXIMUM SPECIFIC GRAVITY (CP 51)	2.421	2.417
THEORETICAL MAXIMUM DENSITY (PCF)	150.7	150.4
VOIDS IN TOTAL MIX (%) (CP-L 5115)		
NINTIAL GYRATIONS (INFORMATION ONLY)	10.9	
NDESIGN GYRATIONS	4.4	3.1 - 5.5
TEST DATA & NDEBION GYRATIONS		
BULK SPECIFIC GRAVITY (CP 44)	2.314	2.313
VOIDS IN MINERAL AGGREGATE (%) (CP 48)	16.3	15.3 - 17.7
VOIDS FILLED WITH ASPHALT (%)	72.8	73.9
HVEEM STABILITY (CP-L 5106)	37	30 min,
COMPACTION TEMPERATURE (°F)	300	300
LOTTMAN MOISTURE SENSITIVITY TEST RESULTS (CP-L	5109, Method B)	
AVERAGE SPECIMEN VOID CONTENT (%)	6.9	6.0 - 8.0
AVERAGE SATURATION (%)	86	
AVERAGE DRY TENSILE STRENGTH (PSI)	56	30 mln.
AVERAGE CONDITIONED TENSILE STRENGTH (PSI)	84	
TENSILE STRENGTH RATIO (%)	98	70 min.

TENSILE STRENGTH RATIO (%) Denotes deviation from specification.

REVAEWED BY

.

1

PRODUCTION SAMPLE TEST REPORT

HOT MIX ASPHALT

645 Novago Steat Denver, CO 60204 303,875,9959, Fax: 303,975,9959 REPORT DATE: August 17, 2009 MIX DESIGN NO.: 251909 GYRATIONS, INITIAL - DESIGN: 8 - 100 DATE SAMPLED: August 11, 2009 DATE RECEIVED: August 12, 2009 DATE TESTED: August 14, 2009 SAMPLED BY: Client

SAMPLE LOCATION: Sta. 61+ 50, 221.47 tons

MATERIAL DESCRIPTION: SX (100) PG 64-28 WP SAMPLE NO.: 3-WP

AGGREGATE PROPERTIES (CP - 31A & 318)

PROJECT: US 34 Bypass Crumb Rubber WesTest PROJECT NO.: 258809 CLIENT: Aggregate Industries John Cheever

1705 S. Acoma Street Denver, CO 80223

	Sample	Job	CDÖT	Production
Sieve Size	Percent	Mix	Grading	Gradation
	Passing	Formula	Specification	Tolerance
1 - 1/2"				
1"				
3/4*				
1/2"	1			
3/8"				
#4				
#8				
#16				
#30				
#50				
#100				
#200				

Test Procedure	Production Sample	Mix Design
	Results	Tolerance / Target
ASPHALT CEMENT CONTENT (%)		
Nuclear Method (CP 85)	6.27	5.8 - 6.4
THEORETICAL MAXIMUM SPECIFIC GRAVITY (CP 51)	2.412	2.417
THEORETICAL MAXIMUM DENSITY (PCF)	150.1	150.4
VOIDS IN TOTAL MIX (%) (CP-L 5115)		
NINTAL GYRATIONS (INFORMATION ONLY)	112	
NDEBIGIN GYRATIONS	4.6	3.1 - 5.5
TEST DATA @ NOEBKEN GYRATIONS		
BULK SPECIFIC GRAVITY (CP 44)	2.301	2.313
VOIDS IN MINERAL AGGREGATE (%) (CP 48)	17.0	15.3 - 17.7
VOIDS FILLED WITH ASPHALT (%)	73.0	73.9
HVEEM STABILITY (CP-L 5106)		
COMPACTION TEMPERATURE (°F)	300	300
LOTTMAN MOISTURE SENSITIVITY TEST RESULTS (CP-L)	5109, Method B)	
AVERAGE SPECIMEN VOID CONTENT (%)		
AVERAGE SATURATION (%)		
AVERAGE DRY TENSILE &TRENGTH (PSI)		
AVERAGE CONDITIONED TENSILE STRENGTH (PSI)		
TENSILE STRENGTH RATIO (%)		

* Denotes deviation from specification.

REVIEWED BY

į.

NUCLEAR A.C. GAUGE CALIBRATION

DATE: 08/03/09

6

GAUGE NO .:

PROJECT NO.:258809CLIENT:Aggregate IndustriesPROJECT:US 34 - BypassMIX NO.:WT 251809, CDOT 1806107BA.C. BRAND / GRADE:Wright PG 64-28 TBOPTIMUM A.C.:5.6BASE WEIGHT:7000 gCALIBRATION NO.:25881

	A.C. CONTENT								
	4.60%	5.60%	6.60%						
10% 3/4" Rock - 35th Ave.	672.6	665.5	658.5						
17% 1/2" Rock - 35th Ave.	1143.4	1131.4	1119.4						
35% Crusher Fines - Distel	2354.0	2329.3	2304.6						
22% Class 7 - 83rd Ave.	1479.7	1464.1	1448.6						
15% Concrete Sand - 83rd Ave.	1008.9	998.3	987.7						
1% Lime - Pete Lien	67.3	66.6	65.8						
100% TOTAL AGG. WT.	6725.7	6655.2	6584.7						
A.C.	324.3	394.8	465.3						
TOTAL MIX WT	7050.0	7050.0	7050.0						
GAUGE COUNT									
DEVIATION									
CORRELATION FACTOR		<u>A1:</u>							
		<u>A2:</u>							
		<u>A3:</u>							

COMMENTS:

IIMother/westest/Aggregate Industries/2009/258809 - US 34 Bypass Crumb Rubber/25881 Nuc AC Calibration

NUCLEAR A.C. GAUGE CALIBRATION

DATE: 08/03/09

6

GAUGE NO .:

PROJECT NO .: 258809 Aggregate Industries US 34 - Bypass WT 251909, CDOT 180610WP ADE: Ecopath PG 64-28 WP CLIENT: PROJECT: MIX NO.: WT 2 A.C. BRAND / GRADE: OPTIMUM A.C.: 6.1 BASE WEIGHT: 7 CALIBRATION NO.: 2 25882

		A.C. CONT	ENT
	5.10%	6.10%	7.10%
10% 3/4" Rock - 35th Ave.	669.0	662.0	654.9
17% 1/2" Rock - 35th Ave.	1137.4	1125.4	1113.4
35% Crusher Fines - Distel	2341.7	2317.0	2292.3
22% Class 7 - 83rd Ave.	1471.9	1456.4	1440.9
15% Concrete Sand - 83rd Ave.	1003.6	993.0	982.4
1% Lime - Pete Lien	66.9	86.2	65.5
100% TOTAL AGG. WT.	6690.5	6620.0	6549.5
A.C.	359.6	430.1	500.6
TOTAL MIX WT	7050.0	7050.0	7050.0
GAUGE COUNT			
DEVIATION			
CORRELATION FACTOR		<u>A1:</u>	
		<u>A2:</u>	
		<u>A3:</u>	
COMMENTS:			

COMMENTS:

\Weither/westest/Aggregate Industries/2009/258809 - US 34 Bypeas Crumb Rubber/25882 Nuc AC Calibration

Crumb Rubber Control Site -- Passing Lane

8/4/2009

				E	quivalent Wa	ter Permesb	Rty Calcul	ations Usin	ng ROMUS	Air Perme	emotor Data					
Vi At De Vi	scoalty of air mospheric Pr blume of air C ensity of wate sccelly of wate	tessure ⊅iamber ir ler			1.64E-0 10135 0.0218 100 0.00	5 kg/m*s 3 Pa 5 m^3 0 kg/m*3 1 kg/m*s	0.02166									
	Test				L ¹⁹	A	t,	t ₂	4	4	Kw1	k _{w2}	k _{w2}	line .	Kang	Revenue
	Sample	NMAS	Voids	Gradution	(m)	(m²)	(\$9C)	(sec)	(39C)	(sec)	(10 ⁻¹ cm/s)	(10 ⁻⁴ cm/s)	(10 ⁻⁴ cm/s)	(10 ^{-a} cm/s)	(10 ⁻⁶ cm/e)	(10 ⁻⁶ cm/s)
5	STA 61+60	SX,			0.025	0.01824	0.714	0.839	1,038	1.442	138	144	150	152	146	147
s	STA 61+60	SX			0.025	0.01824	0.762	0.893	1.103	1.877	129	136	141	131	134	134
5	STA 61+60	SX			0.025	0.01824	0.794	0.939	1.169	1.927	124	129	133	114	125	123
5	STA 51+60	SX			0.025	0.01624	0.797	0.949	1,179	1.905	124	127	132	115	125	123
5	STA 61+10	sx			0.025	0.01824	0.65	0.756	0.95	1.671	152	160	164	131	152	146
5	STA 81+10	SX			0.025	0.01824	0.666	0.776	0.989	1.616	148	156	161	136	150	148
6	STA 61+10	sx			0.025	0.01924	0.663	0.779	0.967	1.619	149	155	161	136	150	148
5	STA 61+30	SX			0.025	D/01824	0.644	0.747	D.928	1.315	153	162	168	167	162	164
5	STA 61+30	SX			0.025	0.01924	0.667	0.777	0.962	1.627	146	155	162	135	150	147
8	STA 61+30	sx			0.025	0.01824	0.654	0.758	0.94	1.281	151	159	166	171	162	164
5	STA 61+30	SX			D.025	0.01824	0.656	0.773	0.961	1.642	150	156	162	134	151	147
5	5TA 61+30	8X.			0.025	0.01824	0.661	0.776	0.952	1.649	149	155	164	133	150	147
5	STA 61+30	SX			0.025	0.D1824	0.674	D.776	0.968	1.613	146	155	161	138	150	147

Crumb Rubber: Terminal Blend

7/20/2009

				Equivalent We	ter Permeabl	liity Celicula	tions Usi	Ig ROMU S	Air Perme	emeter Data					
Viacosty of air Atmospheric Pri Volume of air C Density of water Viacosity of water	essure hamber r er			1.84E-0 10135 0.0218 100 0.00	5 kg/m*s 3 P∎ 6 m*3 0 kg/m*3 1 kg/m*s	0.02186									
Teet				L ⁱⁿ	A	L ₁	t _e	t,	t,	k _{e1}	k	k _{al}	k	k _{evo}	k _{onal} t
Sample	NMAS	Volde	Gradation	(m)	(m ²)	(sec)	(sec)	(sec)	(sec)	(10 ⁻⁴ cm/s) (10 [*] cm/s) (1	0 ⁻⁴ cm/s)	(10 ⁻⁵ cm/s) (1	0 ⁻⁶ cm/st	(10 ⁻⁴ cm/e)
STA 128+70	SX			0.025	0.01824	1.001	1.190	1.498	2.356	99	101	104	93	99	98
STA 129+70	5X			0.025	0.01824	1.02	1.22	1.53	Z.277	97	99	102	96	96	88
STA 129+70	sx			0.025	0.01824	1.034	1.23	1.639	2.245	95	98	101	98	98	98
STA 130+00	8X			0.025	0.01824	2.516	3.09	4.025	5.68	39	39	39	39	39	39
STA 130+00	SX			0.025	0.01824	2,628	3.267	4.196	6.022	38	37	37	36	37	37
STA 130+00	-5X			0.025	0.01824	2.653	3.276	4.253	5.928	37	37	37	37	37	37
STA 130+45	SX			0.025	0.01824	1.391	1.669	2 094	2.911	71	72	74	75	73	74
STA 130+45	SX			0.025	0.01824	1.426	1.731	2.169	3.138	69	70	72	70	70	70
STA 130+45	SX			0.025	0.01924	1.463	1.754	2.221	3.427	67	69	70	64	68	67
STA 130+45	SX			0.025	0.01824	1.489	1.789	2 271	3,319	66	68	69	66	67	67

Crumb Rubber: Terminal Blend

7/20/2009

				Equivalent Wa	ter Permeabl	Ry Calcula	tions Usi	ng RÓMU S	Air Perma	emeter Data					
Viecosty of air Atmospheric Pr Volume of air C Density of wate Viecosity of wate	ressure Chamber f			1.84E-0 10135 0.0218 100 0.00	5 kg/m*s 3 P∎ 6 m*3 0 kg/m*3 1 kg/m*s	0.02186									
Teet				L ⁱⁿ	A	կ	tę	t,	t,	K1	k _{w2}	k _{al}	K	k _{evo}	k _{enni} t
Sample	NMAS	Volde	Gradation	(m)	(m ²)	(sec)	(sec)	(sec)	(sec)	(10 ⁻⁴ cm/s)	(10 ⁻⁹ cm/s) (1	0 ⁻⁴ cm/s)	(10 ⁻⁵ em/s) (1	0 ⁻⁶ cm/at	(10 ⁻¹ cm/e)
STA 128+70	SX			0.025	0.01824	1.001	1.190	1.498	2.356	99	101	104	\$3	99	98
STA 129+70	SX			0.025	0.01824	1.02	1.22	1.53	2,277	97	99	102	96	96	88
STA 129+70	SX			0.025	0.01824	1.034	1.23	1.639	2.245	95	98	101	98	98	98
STA 130+00	8X			0.025	0.01824	2.516	3.09	4.025	5.68	39	39	39	39	39	39
STA 130+00	sx			0.025	0.01824	2,628	3.267	4.196	6.022	38	37	37	36	37	37
STA 130+00	5X			0.025	0.01824	2.653	3.276	4.253	5.928	37	37	37	37	37	37
STA 130+45	SX			0.025	0.01824	1.391	1,669	2 094	2.911	71	72	74	75	73	74
STA 130+45	SX			0.025	0.01824	1.426	1.731	2.169	3.138	69	70	72	70	70	70
STA 130+45	SX			0.025	0.01924	1.483	1.754	2.221	3.427	67	69	70	64	68	67
STA 130+45	SX			D.025	0.01824	1.489	1.789	2 271	3,319	66	68	69	66	67	67

Crumb Rubber Control Site -- Driving Lane

Equivalent Water Permeability Calculations Using RONU SAir Permeameter Data

7/20/2009

.

Viscosity of air Atmospheric Pr Volume of air C Density of wate Viscosity of wat	ressure Chamber If Ner			1.84E-0 10135 0.0218 100 0.00	6 kg/m*s 3 Pa 8 m*3 0 kg/m*3 1 kg/m*s	0.02186									
Test				£19	A	կ	t ₂	t,	ų	K _{et}	Keet	Kwa	Kust	Rang	Kowenth
Sample	NMAS	Volde	Gradation	(m)	(m²)	(\$9C)	(500)	(60G)	(996)	(10 ⁴ cm/s)	(10 ⁻⁸ cm/s)	(10 [*] cm/s)	10 *cm/s)	(10 ⁻⁴ em/s)	(10 ^{-t} em/s)
STA 20+30	SX			0.025	0.01824	0.590	0.675	0.820	1.138	187	179	190	193	182	184
STA 20+30	s×			0.025	0.01824	0.607	0.696	0.647	1.469	163	174	184	149	167	164
STA 20+30	SX			0.025	0.01624	0.616	0.712	0.862	1.43	180	170	181	153	166	164
STA 20+30	SX			0.025	0.01824	0.626	0.72	0.879	1.397	158	168	177	157	166	164
STA 20+40	sx			0.025	0.01824	0.498	0.558	0.679	1.091	198	216	229	201	211	210
STA 20+40	SX			0.025	0.01824	0.504	0.569	0.686	1.066	196	212	226	208	210	210
STA 20+40	SX.			0.025	0.01824	0.514	0.578	0.764	1.031	192	209	221	213	209	210
STA 20+40	8X			0.025	0.01924	0.517	0.588	0.711	1.011	191	206	219	217	208	210
STA 20+30	5X.			0.025	0.01824	0.4B	0.542	0.659	1.147	206	223	236	191	214	210
STA 20+30	SX			0.025	0.01824	0.492	0.652	0.675	1.11	201	219	231	198	212	210
STA 20-30	SX			0.025	0.01824	0 502	0.562	0.69	1.076	197	215	228	204	210	210
STA 20-30	9X			0.025	0.01824	0.507	0.674	0.689	1.051	185	210	223	209	209	210

Crumb Rubber Control Site - Passing Lane

7/17/2009

Viscoelly of air Atmospheric Pr Volume of air C Density of wate Viscoelty of wate	ressure Chamber F			1.84E-0 10135 0.0218 100 0.00	5 kg/m*s 3 Pa 16 m*3 10 kg/m*3 11 kg/m*s	0.02186									
Test				Lot	٨	ŧ,	t,	t,	4	k _{en}	k _{ut}	kwa	8	k _{ret}	k _{energi}
Sample	NMAS	Voids	Gradation	(m)	(m ¹)	(500)	(660)	(200)	(880)	(10 ⁴ cm/s) (10 ⁴ cm/s)	(10*em/s)	10*em/s)	(10 ^{**} cm/s)	(10 ⁻⁴ cm/s)
STA 25+00	SX			0.025	0.01824	2.407	2.842	3.514	4.496	41	42	44	49	44	45
STA 25+00	SX			0.025	0.01824	2.464	2.941	3.639	5.014	40	41	43	44	42	42
STA 25+00	SX			0.025	0.01824	2.61	2.998	3.698	4.864	39	40	42	45	42	42
STA 25+00	sx			0.025	0.01824	2.549	3.049	3.731	5.129	39	40	42	43	41	41
STA 25+00	-sx			0.025	0.01924	2.525	3.015	3,685	4.845	39	40	42	45	42	42
STA 24+80	SX			0.025	0.01924	2.345	2.79	3.415	4.718	42	43	46	47	44	45
STA 24+80	sx			0.025	D.01824	2.388	2.834	3.422	4.623	41	43	48	47	44	45
STA 24+90	SX			0.025	0.01824	2.38	2.833	3.448	4.609	41	43	45	48	44	45
STA 24-80	SX			0.025	0.01924	2.4	2.667	3.492	4.511	41	42	45	49	44	45
STA 24+70	sx			D.025	0.01824	4.657	5.442	6.668	8.581	21	22	23	26	23	23
STA 24+70	SX			0.025	0.01824	4.525	5.249	5.612	8.458	22	23	24	26	24	24
STA 24+70	SX			0.025	0.01824	4.469	5.241	6.532	8.7	22	23	24	25	24	24
STA 24+70	\$X,			0.025	0.01324	4 328	5.124	6.31	7 973	23	24	25	28	25	25

): ۳	@P/ - [*] 0 991 03	ATH " nonging jour world's roo	Pi Cus Proj Pro Biend Da	Rubb Operator: Sheet #: ant Location: tomer Name: ject Location: ject Nomber:	er Plant GABY F 2 Agg In Agg In Agg Agg Agg Agg	Daily Repx <u>ATAGA</u> Date: DASTIES <u>ZNAMSTN</u> 5 34 9/35	Day #: 8/11/2 <i>GR#+% E Y</i> ES	<u>3+4</u> 2009+8/0
d	Start Time	Stop Time	AC Temp	Tons AC	Tons Rubber	Tons	% Robber	Visc at	Z⊋5° 259°F
	7.44		19945	6.54	11	Blend	A	During	
2	1 4 , pe pe	7.25	272	21.11	14	4.6	4.870	17700	
			-				• • • 1.10)	
_				9.47	1.03	11.0			
-	S 220 XV2	a antigen a supervision and		State States Links	ST	5.5897.830			WIR CONSIDER TO THE
	Type (PG)	NE-2014での設み定みた実施 E		Million To Istania Diy (Tas)		8223573 	BOL	Oty (lbs)	# Bags
ı	58-28	7	22	9.97	ן 1				
2					2				
э					- 3			· · · · ·	
4					4				
5					5				
6					6				
7] .	Total del	ivered today	-	*
8			· · ·] т	otal delive	rad previous	38379	17
9						Total delh	ered to date	38379	
ъp						Tota	il used today	2060	89.
11					1	Total u	sed previous	11040	6
12				-	4	Total	used to date	13100	6
		To	tal delivered today	9.97	-		Balance	25279	
		Total	delivered previous	25,73	4.	3 53 65 7 6	25.00 C 272		era succede
		IQU	Tabel used to date	42.10		2000 C	sy Aspinan R	onces since	# Dome
		-	Total used (Doay)	1.77	-	Total dal	hanna an ana		# Dags
			Total used previous	14 7 .	1 .	and all and a	red conditions	11.00	
			Dalace	<u></u>	- 1	Totol dallu	red previous pred to date	31 25	
			Deterior	0	1	Tota	lused index	5310	\rightarrow
		Tank 1	Tank 2	Tank 3		Total u	sed previous	14.61	
۰I	Inches		98."		٦	Total	used to date	72.25	
	Volume		11897.5		1		Balance	×.	
N	Density		9.8		7				
	Total Tons		46.64] :			tels a st	
	inches] `			Qty (Gal)	
	Volume]	Total def	ivered today	÷	
"	Density		6.00294		_ n	otal delive	red previous	300.0	
	Totai Tons				· ·	fotal deliv	ered to date	300.0	
enti	ly of asphai	it subbeyordered:	56. 7	Signature Signature	, Job title, & da , Job title, & da	te:			

p.2

								р.Э
				Rubb	er Plant	Daily Repo	rt .	
264	ΞD/	\TLI®		Operator:	GARY K	RINER	Day #; ;	1+ #;
としい	ΨFF			Sheet #:	1	Date:	8/9+01	2009
	cl	onaina	Pl	ant Location:	AGAIN	DUSTIES	GREELEY	100
			. Cus	tomer Name:	Aco In	Ibusties	7	
		our wonters roo	Proj	ect Location:	S.PA52	34		
			Pro	ject Number:	ABO	135		
			Blend Da	rta				
Start Time	Ston Time	AC Terrin	Tons AC	Tons Rubber	Tons	% Rubber	Visc at -	275 350 °F
					Blend			
11:30	2:30	323	28.20	2.78	30.78	8.977	1500	8/10
10,00	11:45	305*	24.93	2,74	30.24	7.05%	1400	8/11
<u> </u>								
1 1				1	[
				+		· · · · ·		
		·	55 72	600	1000			
10.50 X.80.80				3.7.2	1 V 1 2 V		arial and the	
VD# (PG)		(SIDZASI ROLOGICUS STATE) SOL	City (Tris)	G	86/100 million 1	101	Oty (ibs)	S Rags
1 58-28	Oto	12404	28.20	۰ ٦	A9.2	466 2324	29 324	12
2 58-28	074	13 444	37.57		114.91	1999 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	110 011	
3				1 3			- 1	
4				4				
5				5				
5				6				
7		· · ·	•	1	Total del	ivered today	38379	17
8		·.		י ן	otal delive	red previous	- D	÷
9					Total deliv	ered to date	38379	7
· · · · ·				-	Tota	i used today	11040	þ
<u> </u>				-	Total u	sed previous		-0
۹ <u>ــــــــــــــــــــــــــــــــــــ</u>		ويصارحه المسجو بالمالية	<i>CE</i> # P	4	10TBI-	uses to date	11040	<u></u>
	Tota	delivered previous	32.12	-		paratice	24927	
	Tot	al delivered to date	65.73	-	Sec. 20		Nation	$C(q_{1})$
		Total used today	55.77	1	62-360-CVD-2		Oty (Ths)	# Bags
		Total used previous		1	Total del	ivered today	41.25	/
		Total used to date	55.73] . т	otal delive	red previous		
		Balance	-0-	3	Total deliv	ered to date	61.25	~
					Tota	i used today	14.61	
	Tank 1	Tank 2	Tenk 3		Total as	sed previous	\$	
inches				.[Total	used to date	14.61	
Volume				-		Balance	46.64	<u> </u>
Density				-				ALONGERS
I dtal Tons		807		4 . 1	Zara Bin	$2 \sim O(3)^{16}$	Geographics	
Nolumo -		73"		1 1		F	C(Y (Gal)	
Volume	· · · · ·	11877.5		۰ I	iotal deli	vered today	300.0	
III MARINE I		7.94		- 7	oral delive	rea previous		
Total Tone		Held			Tratal dadas	ered to date!	3000	

Colorado Department of Transporta PROJECT PRODUCED HOT MD	ASPHALT	
Sample No: 1		Project No: NH0341-073
Field Sheet No: 14979		Location: US34-BYPASS RESURFACING 71
Date Received: 8/10/2009 13:36:00		SubAccl. No: 16522
Sample Deec: 1st 10K / IAT, FS# 14979		Mix Design: Now
Remarks: Final Report		Region: 04
		Tested By: R4 Laio
	SuperPave Item	403

.

Form 43 Date: 7/28/20	09 Refinery: E
Form 43 No: 180610	WP Binder: F
Grading: SX	Contractor: A

Refinery:	ECOPATH
Binder:	PG 64-26WP
Contractor:	Aggregale Industries
Pit:	35th Ave (LaFarge), Distel, 63rd

 Volda P	operties .	
Explud	No: 0	
Specimen:	Statua	Specifications

N(des): 100

 Specimen 1:	Specimen 2:	Specimen 3:	Average	Status	Specifications
Max Sp. Gr.:	2.415	Inside Band	2.417	+/- 0.01	
% AC:	6.37	Pass	6.10	+/- 0.3	

Bulk SG:	2.299	2.288	2.288	2.292				
Ht. N (Design):	63.1	63.1	63.1	63.1				
Voids @ N(des):	4.8	5.3	5.3	5.1	Pass	3.90	ŧŀ.	1.2
VMA @ N(des):	17.2	17.6	17.6	17.5	Pass	15.3	-	17.7
VFA @ N(des):	72.1	70.1	70.1	70.8	Газа	65	-	75

	G	radiation Rese	ulta 📃		Sta	bliky Res	ults		
Testing: Voids	Acceptance	Aggrega	ale Correc	tion: No	Excluded Speck	men No: 0			
	Job	ANX	Test F	esulta	Stability Compa	cted By: B	ю		
Sleve mm (in)	% Pess Min	% Pass Max	Status	× Pess	Stabilometer	Run By: B	ĸ		
37.5 (1 1/2)			N/A	100					
25.0 (1)			N/A	100					
19.0 (3/4)	100.00		N/A	100	Specimen 1: Specimen 3:	28			
12.5 (1/2)	90.00	100.00	Pass	94	Specimen 3:	29	2	ital yas	
9.5 (3/8)	80.00	92.00	Pass	86	Average:	28		Fail	
4.75 - #4	57.ÓD	67.00	Pass	60	-				
2.35 - #8	42.00	52.00	Pass	46	Lotiman Results				
1.18 - #16			N/A	33	1 allow 0 anno 1				
600 mic #30	18.00	26.00	Pass	21	Louman Compa	anad na Ar Bak	2		
300 mic #50			N/A	13	Lotimen Lo	ada By: B()		
150 mic #100	l		N/A	9		Average	Status	Job Mix	
75 mic #200	3.80	7.80	Pass	5.9	Wet Avg. T.S.:	76.4			
	Angreget	e Pronerties			Dry Avg. T.S.:	83.6	Pass	30	
Midanha	100	Gradation By			% Voids:	5.7			
PR(088):	100	anasation by	80		% Seturation:	95			
		Test Result	Status	Job Mix	T.S. Retained:	91	Pass	70	
An	gularity T 304	: 44,1	Fait	45.0					
Bulk \$G	of Aggregate	: 2.6							
Bulk SG of Fl	ne Aggregate	2.596							

ODOT C. ... IDEA ALMANT

PROJECT PRODUCED HOT W	X ASPHALT	
Sample No: 2	Project No: NH0341-073	
Field Sheet No: 14980	Location: (JS34-BYPASS RESURFACI)	VG 71
Date Received: 8/11/2009 09:51:00	SubAcct. No: 18522	
Sample Desc: Test #2, FS# 14980	Mix Design: Now	
Remarks: Final Report	Region: 04	
	Tested By: R4 Lab	
	SuperPave Item 403	
Form 43 Date: 7/28/2009	Refinery: ECOPATH	
Form 43 No: 180610WP	Binder: PG 64-28WP	

Colorado Department of Transportation

Grading: SX		Contractor: Aggregate Industries						
N(dee): 100			Pit:	35lh Ave (i	LaFarge), Distel, 83ro			
	Vold	s Properties						
	En	duded Specimen	No: 0					
	Specimen:	Status	Specil	lications				
% AC:	6.31	Pass	6.10	∗/ - 0,3				
Max Sp. Gr.:	2.413	Inside Benc	2.417	+/- 0.01				
<u>\$pecimen_1:</u> Buik SG: 2,296	Specimen 2: 2.294	<u>Specimen 3;</u> 2.296	<u>Avenage</u> 2.295	<u>Ştalua</u>	Specifications			

DUIK DIS:	2,250	2.294	2.200	2.280				
Ht. N (Design):	63.3	63.2	63.2	63.2				
Volds @ N(des):	4.9	4.9	4.9	4.9	Pase	3.90	•/-	1.2
VMA @ N(des):	17.3	17.3	17.3	17.3	Pass	15.3	-	17.7
YFA @ N(des):	71.9	71.6	71.9	71.8	Pass	65	-	75

	G	radalion Res	ulis 📃		Sta	blity Res	ults		
Testing: Voids	Acceptance	Aggreg	ate Correc	tion: No	Excluded Speci	men No: C	1		
		MX.	168	induits	Stability Compa	cled By: E	3C		
Sieve mm (in)	% Pass Min	<u>% Pess Max</u>	<u>Status</u>	% Pass	Stabilometer	Run By: E	aC.		
37.5 († 1/2)			N/A						
25.0 (1)			N/A	100					
19.0 (3/4)	100.00		N/A	100	Specimen 1:	30			
12.5 (1/2)	90.00	109.00	Pass	95	Specimen 2:	31			
9.5 (3/8)	80.00	92.00	Pass	87	Specimen 3:	31	5	Status	
4.75 - #4	57.00	67.00	Pase	66	Average:	31		Pass	
2.35 - #8	42.00	52.00	Pass	52					
1.18 - #15			N/A	37	Lotiman Results				
600 mic #30	18.00	26.00	Pass	24	Latteres Compa	ate of Day			
300 mic #50			N/A	16	Completing completing by:				
150 mic #100			N/A	10	Lottman Lo	ada By:			
75 mic #200	3.80	7.80	Pass	6.7		Average	<u>Status</u>	Job Mix	
	Aggregat	e Properties			Wet Avg. T.S.:				
N(des):	100	Gradation By:	BC .		Dry Avg. T.S.:		N/A	30	
AC Meth	od: AC Nucle	ar Gauge			% Voids: % Seturation:	0.0			
		Teat Resull	Status	Job MLs	T.S. Retained:	0	N'A	70	
Ang	ularity T 304	44,4	Feif	45.0					
Bulk SG	of Aggragate	2.6							
Bulk SQ of Fi	ne Aggregate	2.596							

_

000T F. -- WIRD 04/0000

Color PRO	JECT PRO	nent of Transp DUCED HOT	portatio MIX AS	n SPMALT							
Sam	ple No: 3				Project No: NH0341-073						
Field Sh	eet No: 14991				Location: US34 BYPASS RESURFACING 7						
Date Re	caived: 8/11/2	009 10:43:00			SubAcet. No: 16522						
Sample	e Desc; Tesl #	3, FB# 14981		Mix Design: New							
B	rmarks: Final F	Report				Region: 04					
				Teeted By: R4 Lab							
			<u> </u>	uperPay	e item 403						
F	orm 43 Date:	7/28/2009				Refinery:	ECOPATH				
	Form 43 No:	180610WP		Binder: PG 64-26WP							
	Grading:	sx				Contractor:	Aggregate	Industrie	5		
	N(des):	100				Pit:	35th Ave (L	.aFarge),	Disa	el, 83ro	
				Volds	Properties						
				Excluded Specimen No: 0							
			Sc	ecimen:	Status	Specif	cations				
		% AC		6.25	Pass	6.10	+/- 0.S				
		Max Sp. Gr.		2.412	Inside Bar	nd 2.417	+/- 0.01				
	B.J. CC.	Specimen 1:	Speci	inten 2:	Specimen 3:	Average	<u>Statua</u>	Specif	licati	005	
	врикаы:	2.329	23	3626	E.Q.31	2.329					
HL	N (Design):	62.9	6	3.0	62.7	62.9					
Voids	@ M(des):	3.5	2	1.5	3.4	3.4	Pass	3.90	#-	1.2	
VMA	@ N(des):	16.0	1	6.1	16.0	16.0	Pass	15.3	-	17.7	
VFA	@ N(des):	78.4	7	8.3	78.9	78.5	Fail	65	-	75	
	Gr	adation Resu	its			Sta	bility Rea	ulta			
Testing: No Gr	adation Testin	9 Aggrega	ta Correc	tion: No	Ex	cluded Specia	men No: 0				
	Job	Mix	Test F	lesults	Ste	bility Compa	cted By: B	с			
Sieve mm (In)	<u>% Pass Min</u>	<u>% Pass Nax</u>	<u>Status</u>	% Pass		Stabilometer	Run By: B	с			
37.5 (1 1/2)			N/A	+			-				
25.0 (1)			N/A	0		nacimen fr	64				
19.0 (3/4)	100.00		N'A	0	8	pecimen 1: pecimen 2:	32				
12.5 (1/2)	90.00	100.00	N/A	p	s	pecimen 3:	31		Statu	5	
9.5 (3/8)	80.00	92.00	N/A	D		Augenter-	22		Par		
4.76 - #4	57.00	67.00	N/A	D		Annage:	32		r ase	•	
2.36 - #8	42.00	52.00	NA	0							

26.00

N/A

N/A

N/A

0

σ

۵

_

1.18 - #16

600 mio. - #30

300 mic. - #50

150 mic. • #100

18.00

Lotiman Results

Lottman Compacted By: Lottman Loads By:

50 mic #100 78 mic #200 3.80 -				N/A	0	Lottman Loads By:				
76 mic	- \$200	3.80	7.80	N/A	0.0		Average	Statue		
_		Aggregate	Properties			Wet Avg. T.S.:				
	N(des):	100	Gradation By:	BC		Dry Avg. T.S.:		N/A		
	C Meth	od: AC Nuclea	ar Gauge			% Voids: % Saturation:	0.0			
			Test Result	Status	Job Mix	T.S. Retained:	D	N/A		
	Ang	jularity T 304:	.0	N/A	45.0					
E	Sulk SG	of Aggregate:	2.6							
Bulk S	30 of Fir	na Aggregate:	2.596							

CDOT Form #360 01/2007

Job Mix

30

Color PRO	ado Departr JECT PRO	nent of Trans DUCED HOT	portati MIX A	on SPMALT	·						
Sam	ple No: 3			Project No: NH0341-073							
Field Sh	eet No: 14991			Location: US34 BYPASS RESURFACING 7							
Date Re	caived: 8/11/2	009 10:43:00		SubAcet, No: 16522							
Sample	e Desc: Tesl #	3, FB# 14981		Mix Design: New							
B	imerke: Finel I	Report				Region: 04					
				Teeted By: F4 Lab							
				SuperPay	e item 403						
ħ	orm 43 Dale:	7/28/2009				Refinery:	ECOPATH				
	Form 43 No:	180610WP		Binder: PG 64-26WP							
	Grading:	sx				Contractor:	Aggregate	Industrie	5		
	N(des):	100				Pit:	35th Ave (I	.aFarge),	Dist	el, 63ro	
				Volds	s Properties						
				Exe	cluded Specime	n No: 0					
			\$	ipecimen:	Statue	Specif	cations				
		% A (D:	6.25	Pass	6.10	+/- 0.S				
		Max Sp. Gr		2.412	Inside Bar	nd 2.417	+/- 0.01				
		Specimen 1:	Spe	cimen 2:	Specimen 3:	Average	Status	Speci	licati	ions	
	BUIK SG:	2.329	i	2.368	2.001	2.328					
HL	N (Dealgn):	62.9		63.0	02.7	62.9					
Voids	@ M(des):	3.5		3.5	3.4	3.4	Pase	3.90	#-	1.2	
VMA	@ N(des);	16.0		16,1	16.0	16.0	Pass	15.3	-	17.7	
VFA	@ N(des):	78.4		78.3	78.9	78.5	Fail	65	-	75	
	G	adation Resu	uits			Sta	bility Rea	utta			
Testing: No Gr	adation Testin	g Aggrega	ata Corre	ection: No	Ex	luded Seeal	man Max 0				
	Job	Mix	Test	Results	· 514	hillin Comm	cted Bu: B	c			
Sieve mm (in)	% Pass Mip	<u>% Pass Nax</u>	Status	% Pass	1	Sisbilometer	Bun By: B	с.			
37.5 (1 1/2)			N/A	+				-			
25.0 (1)			N/A	0							
19.0 (3/4)	100.00		N/A	0	8	pecimen 1:	32				
12.5 (1/2)	90.00	100.00	N/A	Þ	5	pecimen 2: pecimen 2:	32		State	æ	
9.5 (3/8)	80.00	92.00	N/A	0	a	perannen o.	-		- un li	-	
4.75 - #4	57.00	67.00	N/A	D		Average:	32		Pas	5	
2.36 - #8	42.00	52.00	N/A	0							

1.18 - #16

300 mic. - #50

150 mic. • #100

_

600 mio. - #30

18.00

Lottman Results

0.0

٥

Average Status Job Mix

N/A

N/A

30

70

Lothman Compacted By: Lottman Loads By:

75 mic #200	3.80	7.80	N/A	0.0	
N(des): AC Metho	Aggregate 100 ad: AC Nuclea	Properties Gradation By: ar Gauge	BC	_	Wet Avg. T.S.: Dry Avg. T.S.: % Voids: % Saturation:
Ang	ularity T 304:	Test Result .0	Status N/A	Jab Mix 45.0	T.S. Retained:
Bulk SG (Bulk SG of Fin	of Aggregate: le Aggregate:	2.6 2.596			

N/A

N/A

N/A

N/A

26.00

0

σ

0 0

_

CDOT Form #360 01/2007

Colorado Department of Transportation PROJECT PRODUCED HOT MIX ASPHALT

Sample No: 136 HQ Field Shoot No: 14979 Data Received: 8/11/2009 14:14:14 Semple Desc: 1st 10K, Lott, IAT, FS # 14979 Remarks: C.F applied

> Form 43 Date: 7/28/2009 Form 43 No: 180610WP Grading: SX N(des): 100

VFA @ N(dee):

.

Project No: NH0341-073 Location: US34-BYPASS RESURFACING 71 SubAcct. No: 10522 Min Dosign: New Region: 04 Tasted By: HQ Lab

SuperPave hem 403

	Refinery: ECOPATH
	Binder: PG 64-28WP
	Contractor: Aggregate industries
	Pil: 35th Ave (LaFarge), Distel, 63rd
Helds Doorsetter	

69.7

	YONGS		
	End	uded Specimen	No: 0
	Specimen:	Statue	Specifications
% AC:	6.42	Fall	6.10 +/- 0.3

71.D

	Max Sp. Gr.:	2.427	Outside Ba	nd 2.417	++° 0.01			
Bulk SQ:	<u>Soecimen 1:</u> 2.295	<u>Specimen 2:</u> 2.306	<u>Specimen 3:</u> 2.300	2.301	<u>Status</u>	Specif	icati	ions
Ht. N (Design):	63.9	63.9	64.0	63.9				
Voids @ N(des):	5.5	4.B	5.2	5.2	Fail	3.90	₩-	1.2
VMA @ N(des):	17.4	16.9	17.2	17.2	Pass	15.3		17.7

69.5

		atts	adation Real	Gi	
Evel	tion: No	te Correc	Aggrega	Acceptance	Testing: Voids
Shah	eeutte	<u> </u>	Mix.	Job	
Si	% Pass	Status	% Pass Max	% Pass Min	Sieve mm (in)
		N/A			37.5 (1 1/2)
	100	N/A			25.0 (1)
Sp	100	N/A		100.00	19.0 (3/4)
Sp	95	Pass	100.00	90.00	12.5 (1-2)
sp	86	Pass	92.00	80.00	9.5 (3/8)
	65	Pass	67.00	57.00	4.75 - #4
	60	Pass	52.00	42.00	2.35 - #8
	36	N/A			1.18 - #16
	23	Pass	26.00	18.00	600 mic #30
Lotte	14	N/A			300 mlc #50
	9	N/A			150 mic #100
	5.8	Pasa	7.80	3.80	75 mic #200
Wet			Properties	Aggregate	
Dry	arcie L	Lopez, Os	Gradation By:	100	N(des):

68.7

AC Method: Pyrolysis C	Wen		
	Test Result	Status	Job Mix
Angularity T 304:	.0	N/A	45.0
Bulk SG of Aggrogate:	2.5		
Bulk SG of Fine Aggregate:	2.596		

Excluded Speci Stability Compa Stabiliometer	men No: ctod By: Run By:	0 Kinnes, Pau Kinnes, Pau	1 1
Specimen 1:	31		
Specimen 2:	29		
Specimen 3:	29	3	talus
Average:	30	I	888°
Lotuman Compet	timan Re cled By: k	Suite Innes, Paul	
Lottman Lo	eds By: K	innes, Paul	
	Average	Status	Job Mix
Wet Avg. T.S.:	71.7		
Dry Avg. T.S.:	82.6	Pass	30
% Voids:	6.3		
% Saturation:	84		
T.S. Retained:	87	Pass	70

Pass

Stability Results

PODT Tom MIRO 01/00/7 ____

65 - 75

Colorado Department of Transportation PROJECT PRODUCED HO? MIX ASPHALT

Sample No: 118 HQ Field Sheet No: 14976 Dete Received: a/3209 15:00:00 Sample Desc: thro only / Research, FS# 14976 Remerks: C.F applied Project No: NH0341-073 Loantion: US34-BYPASS RESURFACING 71 SubJacet. No: 18522 Mix Design: New Region: 04 Testad By: HO Lab

SuperPeve item 403

Form 43 Date:	7/28/2009
Form 43 No:	180610TB
Grading:	SX
N(dea):	100

ć

Rafinery: WRIGHT Binder: PG 64-28TB Contractor: Aggregate Industries Pit: 35th Ave (LaFarge), Distel, 83td

Voide Properties
Free bands of Gran shares a Mar. A

		Established Specimen No: 0				
	Specimen;	Statue	Specifications			
% AC:	5.58	Pass	5.60 +/- 0.3			
Max Sp. Gr.:	2.454	Outside Band	2.439 +/- 0.01			
Specimen 1:	Specimen 2:	Specimen 3:	overege Status			

	Specimen 1:	Specimen 2:	Specimen 3:	Avrerane	Status	Specif	Icați	ons
Bulk SQ:	2.353	2.357	2.359	2.357				
Ht. N (Design):	64.3	64.5	54.4	64.4				
Voids @ N(des):	4.1	3.9	3.8	4.0	Pass	3.90	+/-	1.2
VMA @ N(des):	14.5	14.4	14.3	14.4	Pass	13.7	-	15.1
VFA @ N(dea):	71.8	72.6	73.0	72.5	Pess	65	-	75

enting: Voids	Acceptance	Aggreg	ate Correc	tion: No
	Job	Mx	Test F	lesults
Sieve mm (in)	% Pasa Min	% Pasa Max	Status	% Pass
37.5 (1 1/2)			N'A	
25.0 (1)			N/A	100
19.0 (3/4)	100.00		N/A	100
12.5 (1/2)	90.00	100.00	Pass	98
9.5 (3/8)	80.00	92.00	Pass	90
4.76 - #4	57.00	67.00	Pass	65
2.36 - #6	42.00	52.00	Pass	50
1,18 - #16			N/A	37
500 mic #30	18.00	26.00	Pass	25
300 mic #50			N/A	16
50 mic. • #100			N/A	10
75 mic #200	3.80	7.80	Pase	6.6

N(des): 100	Gredation By: Lam, Johnny					
AC Method: Pyrolysis (Vien					
	Test Result	Status	Job Mix			
Angularity 7 304:	.0	N/A	45.0			
Bulk SG of Aggregate:	2.8					
Bulk SG of Fine Aggregate:	2.596					

Stab	ility Res	ults
Excluded Specim	en No: D	
Stability Compact	ed By: L	opez, Darcie L
Stabilometer R	un By: L	am, Johnny
Specimen 1:	30	
Specimen 2:	40	
Speciment 2.	40	6 1-1-1-
specimen a:	40	Staths
Average:	39	Pass
Lotte	nan Res	ults
Lottman Compack	ed By: Lo	per. Oarcie L
Lotiman Loss	is By: Lo	osz, Darde L

Average	Status	<u>Job Mix</u>
63.6		
73.2	Pass	30
7.3		
80		
87	Pass	70
	Agereas 63.6 73.2 7.3 90 87	Average Statue 63.6 - 73.2 Pass 7.3 - 80 - 97 Pass

0007 F. ... 1000 OI 10007

Colorado Department of Transportation PROJECT PRODUCED HO? MIX ASPHALT

Sample No: 118 HQ Field Sheet No: 14976 Dete Received: a/3209 15:00:00 Sample Desc: thro only / Research, FS# 14976 Remerks: C.F applied Project No: NH0341-073 Loantion: US34-BYPASS RESURFACING 71 SubJacet. No: 18522 Mix Design: New Region: 04 Testad By: HO Lab

SuperPeve item 403

Form 43 Date:	7/28/2009
Form 43 No:	180610TB
Grading:	SX
N(dea):	100

ć

Rafinery: WRIGHT Binder: PG 64-28TB Contractor: Aggregate Industries Pit: 35th Ave (LaFarge), Distel, 83td

Voide Properties
Free bands of Gran shares a Mar. A

	Exclusion specimen no: 0					
	Specimen;	Statue	Specifications			
% AC:	5.58	Pass	5.60 +/- 0.3			
Max Sp. Gr.:	2.454	Outside Band	2.439 +/- 0.01			
Specimen 1:	Specimen 2:	Specimen 3:	overege Status			

	Specimen 1:	Specimen 2:	Specimen 3:	Avrerane	Status	Specif	Icați	ons
Bulk SQ:	2.353	2.357	2.359	2.357				
Ht. N (Design):	64.3	64.5	54.4	64.4				
Voids @ N(des):	4.1	3.9	3.8	4.0	Pass	3.90	+/-	1.2
VMA @ N(des):	14.5	14.4	14.3	14.4	Pass	13.7	-	15.1
VFA @ N(dea):	71.8	72.6	73.0	72.5	Pess	65	-	75

enting: Voids	Acceptance	Aggrega	ste Correc	tion: No
	Job	Mx.	Test F	esulta
Sieve mm (in)	% Pasa Min	% Pass Max	Status	% Pass
37.5 (1 1/2)			N/A	
25.0 (1)			N/A	100
19.0 (3/4)	100.00		N'A	100
12.5 (1/2)	90.00	100.00	Pass	98
9.5 (3/8)	80.00	92.00	Pass	90
4.75 - #4	57.00	67.00	Pass	65
2.36 - #8	42.00	52.00	Pass	50
1,18 - #16			N/A	37
500 mic #30	18.00	26.00	Pass	25
900 mic #50			N/A	16
50 mic #100			N/A	10
75 mic #200	3.80	7.80	Pase	6.6

N(des): 100	Gredation By:	Lam, Johr	1/1V
AC Method: Pyrolysis (- Wen		
	Test Result	Status	Job Mix
Angularity 7 304:	.0	N/A	45.0
Bulk SG of Aggregate:	2.5		
Bulk SG of Fine Aggregate:	2.596		

Sta	bility Re	sults	
Excluded Specin	nen No:	0	
Stability Compac	ted By:	Lopez, Daro	ie L
Stablicmeter i	lun By:	Lam, Johnn	y
Specimen 1:	39		
Specimen 2:	40		
Specimen 3:	40	<u>s</u>	alų š
Average:	39	F	ass
Lot	iman Re	sults	
Lottman Compac	led By: L	opez, Darci	θĹ
Lotiman Los	ida By: L	opez, Darcie	θL
	Americano	Platus	

	Averege	Status	
Wel Avg. T.S.:	63.6		
Dry Avg. T.S.:	73.2	Pass	30
% Volds:	7.3		
% Saturation:	80		
T.S. Retained:	87	Pass	70

0.000T F. 4000. 04 10000

Sample No: 126 F	IQ .		Pro	ect No: NHO	341-073			
Field Sheet No: 14977	,		Location: US34-BYPASS RESUBFACING 7					G 71
Date Received: 8/6/20	009 09:11:00		SubAcct. No: 16522					
Sample Desc: IAT,	FS# 14977		Mix	Design: Nev	r			
Remarks: C.F applied		Region: 04						
			Tes	ded By: HQ	Lab			
		SuperPay	ellem 403					
Form 43 Date:	7/28/2009			Refinery: \	VRIGHT			
Form 43 No:	190610TB Binder: PG 64-28TB							
Greding:	SX		c	Contractor: /	Que gate	Industrice	5	
N(des):	100			PH: 3	Sih Ave (L	aFarge).	Distel, i	8ard
		Voids	Properties					
		Exc	sluded Speckmen	No: 0				
		Specimen:	Status	Specific	septions			
	% AC:	5.49	Pass	5.60	H- 0.3			
	% AC: Max Sp. Gr.:	5.49 2.452	Pass Inside Band	5.60 ÷ 2.439 ÷	H- 0.3 H- 0.01			
	% AC: Max Sp. Gr.: <u>Specimen 1:</u>	5.49 2.452 Specimen 2:	Pass Inside Band	5.60 + 2.439 + <u>Average</u>	H- 0.3 H- 0.01 <u>Status</u>	Speci	lication	<u>s</u>
Bulk \$G:	% AC: Max Sp. Gr.: <u>Specimen 1:</u> 2.356	5.49 2.452 <u>Specimen 2:</u> 2.358	Pass Inside Band <u>Specimen 3:</u> 2.354	5.60 - 2.439 - <u>Average</u> 2.356	H- 0.3 H- 0.01 <u>Status</u>	Specif	Ncations	4
Bulk SG: Ht. N (Design):	% AC: Max Sp. Gr.: <u>Specimen 1:</u> 2.356 54.1	5.49 2.452 Specimen 2: 2.358 64.2	Pass Inside Band <u>Specimen 3:</u> 2.354 64.4	5.60 - 2.439 - <u>Average</u> 2.356 64.2	H- 0.3 H- 0.01 <u>Statuş</u>	Spect	Acations	5
Bulk SG: HL N (Design): Volds () M(des):	% AC: Max Sp. Gr.: <u>Specimen 1:</u> 2.356 54.1 3.9	5.49 2.452 Specimen 2: 2.358 64.2 3.9	Pass Inside Band <u>Specimen 3:</u> 2.354 64.4 4.0	5.60 - 2.439 - <u>Average</u> 2.356 64.2 3.9	⊮ 0.3 ⊮ 0.01 <u>Status</u> Pass	<u>Specit</u> 3.90	lication: +/- 1	<u>e</u> 2
Bulk SG: HL N (Design): Volds @ H(des): VHLA @ N(des):	% AC: Max Sp. Gr.: <u>Specimen 1:</u> 2.356 54.1 3.9 14.4	5.49 2.452 <u>Specimen 2:</u> 2.358 64.2 3.9 14.3	Pass Inside Band <u>Specimen 3:</u> 2.354 64.4 4.0 t4.4	5.60 - 2.439 - <u>Avenage</u> 2.356 64.2 3.9 14.4	H· 0.3 H- 0.01 <u>Stalue</u> Pass Pass	<u>Spect</u> 3.90 13.7	fication: +/- ↑ - 15	₫ _2 3.1

	Gradation Results					
Teating: Voids	Acceptance	Aggrege	gate Correction: No			
	Job	Mix	Teat F	teculta		
Slove mm (in)	% Pass Min	% Pass Max	Status.	% Pess		
37.5 (1 1/2)			N/A.			
25.0 (1)			N/A	100		
19.0 (3/4)	100.00		N/A	100		
12.5 (1/2)	90.00	100.00	Pase	98		
9.5 (3/8)	80.00	92.00	Pass	89		
4.75 - 44	57.00	67.00	Pass	65		
2.36 - #8	42.00	52.00	Pass	51		
1,18 - #16			N/A	37		
600 mic #30	18.00	26.00	Pass	25		
300 mic #50			N/A	16		
150 mic. • #100			N/A	1D		
75 mic #200	3.60	7.60	Pass	6.2		
	Accrecat	e Properties				
N(des):	100	Gradation By	len kat			

N(des): 100 G	iradetion By:	Lam, John	ny			
AC Method: Pyrolysis Over.						
	Test Result	Statue	Job Mix			
Angularity T 304:	.0	NA	45.0			
Bulk SG of Aggregale:	2.6					
Bulk SG of Fine Aggregale:	2.596					

	1011 111	
Excluded Specim	en No:	0
Stability Compact	led By:	Lopez, Darcie L
Stabilometer R	un By:	Kinnes, Paul
Specimen 1:	39	
Specimen 2:	40	
Specimen 3:	39	<u>Status</u>
Average:	39	Pass
Lott	man Re	esulta

Lotiman Compacted By: Lopez, Darcie L Lotiman Loads By: Lopez, Darcie L

	Average	Status	Job Mix
Wet Avg. T.S.:	78.6		
Dry Avg. T.S.:	38.7	Pass	30
% Voids:	7.5		
% Saturation:	90		
T.S. Retained:	89	Pass	70

Colorado Department of Transportation PROJECT PRODUCED HOT MIX ASPH/	LT
Sample No: 3	Project No: NH0341-073
Field Sheet No: 14978	Location: U\$34-BYPASS RESURFACING 71
Date Received: 6/4/2009 \$1:11:00	SubAcct No: 16522
Sample Depc: Test #3, FS# 14978	Mix Design: New
Remarks: Final Report	Region: 04
	Tested By: R4 Lab
Superi	ave Item 403
Form 43 Date: 7/28/2009	Refinery: WRIGHT
Form 43 No: 180610TB	Binder: PG 64-28TB
Grading: SX	Contractor: Aggregate Industries
N(des): 100	Pit: 35th Ave (LaFarge), Dielei, 83ro

Volds Properties								
	Exclu	ded Spealman	Na: O					
	Specimen:	Specifications						
AC:	5.40	Pass	5.60 +/- 0.3					

	% AC:	5.40	Pass	5.60	+/- 0.3	
	Max Sp. Gr.:	2.447	Inside Band	2.439	+/- 0.01	
Bulk SG:	<u>Specimen 1;</u> 2.966	Specimen 2: 2:365	Specimen 3: 2.361	Average 2.364	Status	Specifications

Ht. N (Design):	63.8	63.8	64.0	63.9				
Volds @ N(des):	3.3	3.3	3.5	3.4	Pass	3.90	+/-	1.2
VMA @ N(des):	13.9	13.9	14.1	14.0	Pass	13.7	-	15.1
VFA @ N(des):	76.1	76.1	75.0	75.7	Fail	65	-	75

Gradation Results			Stability Results					
Testing: Voids Acceptance Aggrega Job Mix		ate Correction: No Test Results		Excluded Speci	men No: 0			
Sieve mm (in) 37.5 (1 1/2)	% Pess Min	% Pass Max	Status N/A	% Pass	Stability Compa Stabiliometer	Run By: E	ки С	
25.0 (1)			N/A	100				
19.0 (3/4)	100.00		N/A	100	Specimen 1:	43		
12.5 (1/2)	90.00	100.00	Pass	96	Specimen 2:	43		
9.5 (3/8)	80.00	92.00	Pass	86	Specimen 3:	43	8	tatus
4.75 - #4	57.00	67.00	Рава	63	Average:	43	1	² 356
2.36 - 48	42.00	52.00	Pass	50				
1.18 - #16			N/A	36	Lot	liman Res	ulta	
600 mic #30	18.00	26.00	Pass	24	Lotiman Compe	ted By:		
300 mic #50			N/A	15				
150 mir #100			N/A	10	Lottman Lo	ads 8y:		
75 mic #200	3.80	7.80	Pass	6.7		Average	Status	<u>, iob Mix</u>
	Aggregat	e Properties			Wet Avg. T.S.:			
N(des):	100	Gradation By:	DKB		Dry Avg. T.S.:		N/A	30
AC Meth	od: AC Nucle	ar Gauge			% Yolds: % Seturation:	0.0		
		Test Result	Status	Job Nix	T.S. Retained:	0	N/A	70
Ang	pularity T 304	44.0	Fail	45.0				

Bulk SG of Aggregate: 2.5

.

Bulk SG of Fine Aggregate: 2.596

ODOT Form 4080 04/0507

Colorado Generiment of Transportation	
PROJECT PRODUCED HOT MIX ASP	HALT
Sample No: 2	Project No: NH0341-073
Field Sheet No: 14977	Location: US34-BYPASS RESURFACING 7
Date Received: 8/4/2009 11:10:00	SubAcct. No: 16522
Sample Deec: Tect #2, FS# 14977	Mix Design: New
Remarks: Final Report	Region: 04
	Testad By: R4 Lab
Supe	nPave Item 403
Form 43 Date: 7/28/2009	Refinery: WRIGHT
Form 43 No: 180610TB	Binder: PG 64-28TB
Grading: SX	Contractor: Aggregate industries

Grading: N(des):	SX 100	Contractor: Aggregate industries Pit: 35th Ave (LaFarge), Distel, i						
		Voide	ș Properties					
	Excluded Specimen No: 0							
		Specimen:	Status	Specif	cations			
	% AC:	5.26	Fall	5.6D	t√- 0.3			
	Max Sp. Gr.:	2.449	Inside Band	2.439	n' - 0.01			
Bulk SG:	Specimen 1: 2.376	Specimen 2: 2.374	Speciman 3: 2.376	<u>Average</u> 2.376	Statute	Specifications		

BUIK OG.	6.010	4.3/4		2.470				
HI. N (Design):	63.5	63.6	63.5	63.5				
Volds @ N(des):	3.0	3.1	3.0	3.0	Pass	3.90	+/-	1.2
VMA @ N(des):	13.4	13.5	13.4	13.4	Fall	13.7	-	15.1
VFA @ N(des):	77.8	77.4	77.9	77.7	Fail	65	-	75

Gradation Results					Stability Results			
Testing: Voids Acceptance Job M		Aggregate Correction: No			Excluded Speci	men No: C)	
		Mix	Test F	lesuits	Stability Compacted By: DKB			
Sieve.mm.(in) 37.5 (1 1/2)	<u>% Papa Min</u>	% Pass Max	<u>Status</u> N/A	<u>% Pass</u>	Stabilometer	Run By: B	IC .	
25.0 (1)			N/A	100				
19.0 (3/4)	T00.00		N/A	100	Specimen 1:	42		
12.5 (1/2)	90.00	100.00	Pass	96	Specimen 2:	41		
9.5 (3/8)	80.00	92.00	Pass	87	Specimen 3:	43	1	Status
4.75 - #4	57.00	67.00	Pass	64	Average:	42		Pass
2.35 - #9	42.00	52.00	Pass	51				
1.18 - #16			N/A	37	Lotiman Results			
600 mic #30	18.00	26.00	Pass	25	Lotimon Compa	ter By		
300 mic #50			N/A	16	Lottmen Loads By:			
150 mic #100			NA	10				
75 mic #2 00	3.80	7.60	Pase	7.1		Average	Statua	Job Mix
Accreate Properties					Wet Avg. T.S.:			
N(des):	100	Gradation By	DKB		Dry Avg. T.S.:		N/A	30
AC Method: AC Nuclear Gauge				% Volds:	0.0			
		Test Result	Status	Job Mix	% Saturation:		MA	70
Angularity T 304: 44.		: 44.0	Fail	45.D			1474	70
Bulk SG of Aggregate:		: 2.6						
Buik SG of Fine Aggregate:		2.596						

COOT From POOL OF MARY
Asphalt Cement Results and Final Quantity - PG 64-									
Subaccount:	16522PG64-28	Colorado Department of Transportation							
Project:	NH 0341-073	Bifuminous Unit 303-398-6530							
Location:	US 34 Bypass Resurfacing 71st - 8th Ave.	4670 Holly St., Unit 4							
Region:	4	Denver, Co. 80216							
Grade:	PG64-28								
Refinery:	SUNCOR, Deriver	Test Methods: AASHTO ASTM							
ing inci y									

FS# 1 AA Specij	lot# ÷ C\ SHTO ication	₹of Si ans	1 <i>mp#</i>	IAT	Date Samp	Spec Grav	Brook Vise Max Spa-s	DSR Min 1.00 kPa	Duet Min 50	Tough Min 110úp	Tenac Min 75i/p	LOB Max loss 1.00	RTFO DSR Min 2.20 kPa	RTFO Duct Min 20	RBR S Max 340 MPs	BBR m Min 0.300	Dir Tens Min 1.0
44106	1	0	1	Y	6/16/2009			1.66	60.0	190.0	174.0		3.23	35.0	123	.355	
37699	1	7	2		6/16/2009			1.66	60.0	210.0	194.0		3.20	41.0	122	.356	
44118	2	0	2	¥	8/18/2009			1.75	60.0	249.0	231.0		3.32	33.0	137	.352	
37699	2	7	13		7/9/2009			1.55		150.0	138.0						
37700	8	7	16		7/17/2009			1.56		150.0	136.D						
37673	4	2	1		8/19/2009			1.69	60.0	212.0	197.0		3.24	34.0	135	.347	

Subaccount: **16522PG64-28** Wednesday, September 02, 2009

* denotes deviation from specs

Page 1 of 2

CDOT Form 67 MIZ

							aspnau o	стен к	esuus Cri	ито кио	per Kese	arca ro	04 2811	,					
Subaccount: 16522PG64-26TB Project: NH 0341-073 Location: US 34 Bypass Resurfacing Region: 4 Conde: 54.28TB							'ist lo 8lh	Ave.				Colorado Department of Transportation Bituminous Unit 303-398-6530 4670 Hally St., Unit A Denver, Co. 80216							
Refine	ny:		Wrig	hl,C	hanneh	view, TX				Test	Methods: .	AASHTO-A	ISTM						
FS# A. Speci	Lot# ASH7 fication	Ci Ci an	# of S uns	ump#	IAT	Date Swop	Spec Grav	Brook Visy Max 3ya-s	DSR Min 1.00 kPa	Duct Min 50	Tough Min Hhiip	Tenac Min 75ilp	LOH Max loss 1.00	RTFO DSR Min 3.2# kPa	RTFO Duct Min 20	BBR S Max 340 MPa	BBR m Min 6.309	Dir Tens Min 1.0	
44114	Ť		D	1	Y	8/4/2009			2.10	28.5 *	102.0 *	2.1 *		3.48	16.0 *	117	.965		
1	1		0	1		\$3/2009			2.01	23.5 *	115.0	2.0 -		3.35	16.5	282	302		
37671	1		3	2		6/4/2009			2.08	28.3 *	103.0 *	1.9 *		3.49	16.0 *	124	.358		
Total ni Total ni Total to	unber unber ns of	r of r oj Mit	'QA si TAT s x7 Ris	mpies ampies vier co	i on Aus s on Ibir wored:	ptoject: project:		3 1 1460											
Final p	ay qu	ant	ity:				tons of M	ix / Binder		A	RRAS BR	R / 14, ven	te steel of -i	en:					
Approv	ed by	:																	
Distribut	ion: Re Pi	Reș Igio Igio	gian N m Doe et Fili	laieris sumen t	ds Engli tation U	neer hij													

Asphalt Cement Results Crumb Rubber Research PG 64-28TB

Subaccount: 16522PG64-28TB Thursday, August 20, 2009

² donotes deviation from standard PG 64-28 Specs

Page 1 of 1

CDD1 Fana 67 8802

Asphalt Cement Results Crumb Rubber PG 64-28 WP

Subaccount:	16522PG64-28WP	Colorado Department of Transportation
Project:	NH 0341-073	Bituminous Unit 303-398-6530
Location:	US 34 Bypass Resurfacing 71st - 8th Ave.	4670 Hally SL, Unit A
Region:	4	Denver, Co. 80216
Grade:	64-28WP	
Refinery:	EcoPath	Text Methods: AASHTO ASTM

FS# Lot# # of Samp# Date Sp Cars IAT Samp Gr AASHTO					Spec Grav	Brook Visc Max	DSR Min	Duct Min	Tough Min	Tenac Min	LOH Max loss	RTFO DSR Min	RTFO Duct Min 20	BBR S Max	BBR m Min	Dir Tens Min	
Specif	ROUND	9					5@a-s	1.00 kPa	54	11000	75Up	1.00	2.20 M2		300 MPa	0.300	1.0
37672	1	3	1		B/10/2009			2.06	6.0 *	40.0 *	5.0 *		4.47	2.0 *	195	.308	
44116	1	D	1	γ	8/10/2009			1.91	6.0 *	32.0 *	3.0 *		4.86	4.0 *	192	.308	
Total number of QA samples on this project:						3											
Total number of IAT samples on this project:							1										
Total tons of Mix / Binder cowred:							1079										

.

Final pay quantity: ______tons of Mix / Binder _____

Approved by:____

Distribution: Region Manetals Engineer Region Documentation Unit Project File

Sabaccount: **16522PG64-28WP** Wednesday, August 26, 2009

 $^{\circ}$ denotes deviation from standard PG 64-28 specs

CD07 Form 67 8/62

Page 1 of 1